Initial commit
Browse files- README.md +18 -22
- args.yml +2 -2
- config.yml +13 -21
- ppo-Acrobot-v1.zip +3 -0
- ppo-Acrobot-v1/_stable_baselines3_version +1 -0
- ppo-Acrobot-v1/data +115 -0
- ppo-Acrobot-v1/policy.optimizer.pth +3 -0
- ppo-Acrobot-v1/policy.pth +3 -0
- ppo-Acrobot-v1/pytorch_variables.pth +3 -0
- ppo-Acrobot-v1/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
- train_eval_metrics.zip +2 -2
- vec_normalize.pkl +3 -0
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
-
- name:
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
@@ -16,13 +16,13 @@ model-index:
|
|
16 |
type: Acrobot-v1
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
-
# **
|
25 |
-
This is a trained model of a **
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
|
@@ -43,39 +43,35 @@ pip install rl_zoo3
|
|
43 |
|
44 |
```
|
45 |
# Download model and save it into the logs/ folder
|
46 |
-
python -m rl_zoo3.load_from_hub --algo
|
47 |
-
python -m rl_zoo3.enjoy --algo
|
48 |
```
|
49 |
|
50 |
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
```
|
52 |
-
python -m rl_zoo3.load_from_hub --algo
|
53 |
-
python -m rl_zoo3.enjoy --algo
|
54 |
```
|
55 |
|
56 |
## Training (with the RL Zoo)
|
57 |
```
|
58 |
-
python -m rl_zoo3.train --algo
|
59 |
# Upload the model and generate video (when possible)
|
60 |
-
python -m rl_zoo3.push_to_hub --algo
|
61 |
```
|
62 |
|
63 |
## Hyperparameters
|
64 |
```python
|
65 |
-
OrderedDict([('
|
66 |
-
('
|
67 |
-
('exploration_final_eps', 0.1),
|
68 |
-
('exploration_fraction', 0.12),
|
69 |
('gamma', 0.99),
|
70 |
-
('
|
71 |
-
('
|
72 |
-
('
|
73 |
-
('n_timesteps',
|
|
|
74 |
('policy', 'MlpPolicy'),
|
75 |
-
('
|
76 |
-
('target_update_interval', 250),
|
77 |
-
('train_freq', 4),
|
78 |
-
('normalize', False)])
|
79 |
```
|
80 |
|
81 |
# Environment Arguments
|
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
+
- name: PPO
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
|
|
16 |
type: Acrobot-v1
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -80.30 +/- 15.87
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **Acrobot-v1**
|
25 |
+
This is a trained model of a **PPO** agent playing **Acrobot-v1**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
|
|
|
43 |
|
44 |
```
|
45 |
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env Acrobot-v1 -orga dlantonia -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ppo --env Acrobot-v1 -f logs/
|
48 |
```
|
49 |
|
50 |
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env Acrobot-v1 -orga dlantonia -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ppo --env Acrobot-v1 -f logs/
|
54 |
```
|
55 |
|
56 |
## Training (with the RL Zoo)
|
57 |
```
|
58 |
+
python -m rl_zoo3.train --algo ppo --env Acrobot-v1 -f logs/
|
59 |
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ppo --env Acrobot-v1 -f logs/ -orga dlantonia
|
61 |
```
|
62 |
|
63 |
## Hyperparameters
|
64 |
```python
|
65 |
+
OrderedDict([('ent_coef', 0.0),
|
66 |
+
('gae_lambda', 0.94),
|
|
|
|
|
67 |
('gamma', 0.99),
|
68 |
+
('n_envs', 16),
|
69 |
+
('n_epochs', 4),
|
70 |
+
('n_steps', 256),
|
71 |
+
('n_timesteps', 1000000.0),
|
72 |
+
('normalize', True),
|
73 |
('policy', 'MlpPolicy'),
|
74 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
|
|
|
|
|
|
75 |
```
|
76 |
|
77 |
# Environment Arguments
|
args.yml
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
!!python/object/apply:collections.OrderedDict
|
2 |
- - - algo
|
3 |
-
-
|
4 |
- - conf_file
|
5 |
- null
|
6 |
- - device
|
@@ -56,7 +56,7 @@
|
|
56 |
- - save_replay_buffer
|
57 |
- false
|
58 |
- - seed
|
59 |
-
-
|
60 |
- - storage
|
61 |
- null
|
62 |
- - study_name
|
|
|
1 |
!!python/object/apply:collections.OrderedDict
|
2 |
- - - algo
|
3 |
+
- ppo
|
4 |
- - conf_file
|
5 |
- null
|
6 |
- - device
|
|
|
56 |
- - save_replay_buffer
|
57 |
- false
|
58 |
- - seed
|
59 |
+
- 33537391
|
60 |
- - storage
|
61 |
- null
|
62 |
- - study_name
|
config.yml
CHANGED
@@ -1,27 +1,19 @@
|
|
1 |
!!python/object/apply:collections.OrderedDict
|
2 |
-
- - -
|
3 |
-
-
|
4 |
-
- -
|
5 |
-
-
|
6 |
-
- - exploration_final_eps
|
7 |
-
- 0.1
|
8 |
-
- - exploration_fraction
|
9 |
-
- 0.12
|
10 |
- - gamma
|
11 |
- 0.99
|
12 |
-
- -
|
13 |
-
-
|
14 |
-
- -
|
15 |
-
-
|
16 |
-
- -
|
17 |
-
-
|
18 |
- - n_timesteps
|
19 |
-
-
|
|
|
|
|
20 |
- - policy
|
21 |
- MlpPolicy
|
22 |
-
- - policy_kwargs
|
23 |
-
- dict(net_arch=[256, 256])
|
24 |
-
- - target_update_interval
|
25 |
-
- 250
|
26 |
-
- - train_freq
|
27 |
-
- 4
|
|
|
1 |
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 0.0
|
4 |
+
- - gae_lambda
|
5 |
+
- 0.94
|
|
|
|
|
|
|
|
|
6 |
- - gamma
|
7 |
- 0.99
|
8 |
+
- - n_envs
|
9 |
+
- 16
|
10 |
+
- - n_epochs
|
11 |
+
- 4
|
12 |
+
- - n_steps
|
13 |
+
- 256
|
14 |
- - n_timesteps
|
15 |
+
- 1000000.0
|
16 |
+
- - normalize
|
17 |
+
- true
|
18 |
- - policy
|
19 |
- MlpPolicy
|
|
|
|
|
|
|
|
|
|
|
|
ppo-Acrobot-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43f5bf21c7bc419b1e2751a29d3bd77d683a65293e7215111d33b02eb65957fe
|
3 |
+
size 147555
|
ppo-Acrobot-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.4.0a7
|
ppo-Acrobot-v1/data
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7be251e851b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be251e85240>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be251e852d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be251e85360>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7be251e853f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7be251e85480>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7be251e85510>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be251e855a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7be251e85630>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be251e856c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be251e85750>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7be251e857e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7be2520b0840>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1003520,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": 0,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1723041307235966614,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": null,
|
33 |
+
"_last_episode_starts": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_original_obs": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWV9QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAQAAAAAAAE/bfz9SCwm9Rsl/P5ZbJz3r0oc9dBlsPXkHfz9JMLI9HDl/PxJvn70OSYe9glHJPeamfz+/g1U9MDd/P7QzoD0tsHe9vz7mvEoxfz+KiKK9961/P8HhTL1pfku9Jo+YvfHlfz9n/+Y8Ysh/P/O1KL1pyoK9DJmfvf55fz8e54I97at/P71oTz0SC3g9vCUHvRb6fz/OI1y8Pf9/Pzkjnjvpecq8T1ACPfSZfz86fWQ9ltN/P/3EFj1UPLK9tIt+PbC5fj8YHsy9KH1/P7JZgT06KrS9yLDrPNcAfz/Ii7S9nMp+P2/Exr1I8eg8HNfLPOvRfz/Qkhk9wv5/P9GXybs4FGa9ePiCvKm8fz/7ojm9Fxd/P5WCrL2cuqw9V3ZGvbb8fz8UJyQ83KV/P2fBVr3Hzrm9TdS2vQ2+fj9QwMq9xF5/P0eSj70ZZLG9o1rTvIL8fz+KISm8f4t/P+YfdL1FBWA9YeY2vZPmfz/VK+Q88Zp/P29hY708c5W7bUtmvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsGhpSMAUOUdJRSlC4="
|
40 |
+
},
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwE8AAAAAAACMAWyUSz+MAXSUR0CBG5dkauOkdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBG47VawEAdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBJNVd5Y5ldX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CBJZDqnm7rdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBJaXBP9DQdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0CBJZtjTa0ydX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBJaJSBK+SdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0CBJcNoakyldX2UKGgGR8BWQAAAAAAAaAdLWmgIR0CBJbxVhkRSdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CBJbpHI6sAdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBJgTmnwXqdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CBJj8EV32VdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBJjdi2DxtdX2UKGgGR8BdgAAAAAAAaAdLd2gIR0CBJl5/LDAKdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBJnKLbYbsdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0CBJvp/wy6+dX2UKGgGR8BXgAAAAAAAaAdLX2gIR0CBJv/6wdKedX2UKGgGR8BdwAAAAAAAaAdLeGgIR0CBJ1e8f3evdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBJ4/nnuAqdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CBJ8qfe1rqdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBKA2d/axpdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CBKAphnanKdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0CBKCH9m6GydX2UKGgGR8BWAAAAAAAAaAdLWWgIR0CBKDRjSXt0dX2UKGgGR8BYwAAAAAAAaAdLZGgIR0CBKFR6Ww/xdX2UKGgGR8BYgAAAAAAAaAdLY2gIR0CBKGI/qxC6dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBKGX5WRzSdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBKHGEPDpDdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0CBKHze40/GdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0CBKHNRm9QGdX2UKGgGR8Bl4AAAAAAAaAdLsGgIR0CBKMapgkTpdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CBKP9Dx9XtdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBKPnjABT5dX2UKGgGR8BXAAAAAAAAaAdLXWgIR0CBKYJ7b+LndX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CBKW2bXpW4dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBKXoFmnO0dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBKbgflp49dX2UKGgGR8BSwAAAAAAAaAdLTGgIR0CBKgtHxz7udX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBKhBnBciXdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBKkupS75EdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CBKkndfsu4dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBKmsunMt9dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBKmHaews5dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CBKno+OfdzdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0CBKqLQ5WBCdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CBKupBHCoCdX2UKGgGR8BZQAAAAAAAaAdLZmgIR0CBKwvxH5JsdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CBKzV7x/d7dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBK3ZTyauwdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBNLFJg9eQdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBNMepXIU8dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CBNQKMvRJFdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0CBOA1uzhP1dX2UKGgGR8BXgAAAAAAAaAdLX2gIR0CBOCXyAhB7dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBODGJemeldX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBOFQQ+UyIdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0CBOEuM+/xldX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBOIwSrYGudX2UKGgGR8BUQAAAAAAAaAdLUmgIR0CBOMIrvsqsdX2UKGgGR8BjQAAAAAAAaAdLm2gIR0CBOL2aDwpfdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBOMdT5wfhdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CBOOEvCdjHdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0CBOTteD3/QdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBOZrQgLZ0dX2UKGgGR8BSgAAAAAAAaAdLS2gIR0CBOeh1Tzd2dX2UKGgGR8BVwAAAAAAAaAdLWGgIR0CBOcVh1DBudX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CBOexUvPC3dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBOi2m51/2dX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CBOjwHZ9NOdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0CBOlllsguAdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBOl70nPVvdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CBOo5/9YOldX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBOsh/RVp9dX2UKGgGR8BXAAAAAAAAaAdLXWgIR0CBOy7J4jbBdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0CBO067ulXSdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBO2ID5j6OdX2UKGgGR8BdwAAAAAAAaAdLeGgIR0CBO4txMnJDdX2UKGgGR8BYAAAAAAAAaAdLYWgIR0CBO5kz41xbdX2UKGgGR8BgwAAAAAAAaAdLh2gIR0CBO+NMGorGdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBPAItUXHjdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CBPEIvalDXdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0CBPEB/ZuhsdX2UKGgGR8BfgAAAAAAAaAdLf2gIR0CBPFoPkJa8dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBPI0P6KtQdX2UKGgGR8BXQAAAAAAAaAdLXmgIR0CBPIXhwVCYdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CBPKRdQfp2dX2UKGgGR8BUQAAAAAAAaAdLUmgIR0CBPKHfuTibdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0CBPMw7DEWJdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CBPNghr30xdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBPUAeaKDTdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CBPT4TsY2sdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBPX11W8yvdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CBPaFev6j4dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBPh+fh/AkdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBPnlUZNwjdX2UKGgGR8BXwAAAAAAAaAdLYGgIR0CBPmq/dqL1dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBPnvKlpGndX2UKGgGR8BVgAAAAAAAaAdLV2gIR0CBPqLS/j82dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBPsphnanKdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBPtoWYWtVdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 980,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVNAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/2w9JwdYx4sGUaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD/bD0lB1jHiQZRoC0sGhZRoGXSUUpSMCGxvd19yZXBylIxDWyAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgLTEyLjU2NjM3MSAtMjguMjc0MzM0XZSMCWhpZ2hfcmVwcpSMPVsgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgMTIuNTY2MzcxIDI4LjI3NDMzNF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
6
|
63 |
+
],
|
64 |
+
"low": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
|
65 |
+
"high": "[ 1. 1. 1. 1. 12.566371 28.274334]",
|
66 |
+
"low_repr": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
|
67 |
+
"high_repr": "[ 1. 1. 1. 1. 12.566371 28.274334]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
73 |
+
"n": "3",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 256,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.94,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"rollout_buffer_class": {
|
87 |
+
":type:": "<class 'abc.ABCMeta'>",
|
88 |
+
":serialized:": "gAWVNgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwNUm9sbG91dEJ1ZmZlcpSTlC4=",
|
89 |
+
"__module__": "stable_baselines3.common.buffers",
|
90 |
+
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}",
|
91 |
+
"__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
|
92 |
+
"__init__": "<function RolloutBuffer.__init__ at 0x7be251febf40>",
|
93 |
+
"reset": "<function RolloutBuffer.reset at 0x7be251ff0040>",
|
94 |
+
"compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x7be251ff00d0>",
|
95 |
+
"add": "<function RolloutBuffer.add at 0x7be251ff0160>",
|
96 |
+
"get": "<function RolloutBuffer.get at 0x7be251ff01f0>",
|
97 |
+
"_get_samples": "<function RolloutBuffer._get_samples at 0x7be251ff0280>",
|
98 |
+
"__abstractmethods__": "frozenset()",
|
99 |
+
"_abc_impl": "<_abc._abc_data object at 0x7be2520b3980>"
|
100 |
+
},
|
101 |
+
"rollout_buffer_kwargs": {},
|
102 |
+
"batch_size": 64,
|
103 |
+
"n_epochs": 4,
|
104 |
+
"clip_range": {
|
105 |
+
":type:": "<class 'function'>",
|
106 |
+
":serialized:": "gAWVLgUAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUaAqFlGgMhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUaBGFlCl0lFKUfZQoaBaMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpRoGIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlGgajEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgdKVKUhZR0lFKUaCRoQ32UfZQoaBhoN2gnjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UaCl9lGgrTmgsTmgtaD5oLk5oL2gxaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgzKYwBX5SFlGg2jARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaDxOTmgdKVKUhZR0lFKUaCRoVH2UfZQoaBhoS2gnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWg+aC5OaC9oMUc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaFxdlGhefZR1hpSGUjCFlFKUhZRoXF2UaF59lHWGlIZSMC4="
|
107 |
+
},
|
108 |
+
"clip_range_vf": null,
|
109 |
+
"normalize_advantage": true,
|
110 |
+
"target_kl": null,
|
111 |
+
"lr_schedule": {
|
112 |
+
":type:": "<class 'function'>",
|
113 |
+
":serialized:": "gAWVoAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgJKYwBX5SFlGgOjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaBVOTmgdKVKUhZR0lFKUaCRoPn2UfZQoaBhoNWgnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWgZaC5OaC9oMUc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEZdlGhIfZR1hpSGUjAu"
|
114 |
+
}
|
115 |
+
}
|
ppo-Acrobot-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4284a4e7d988983a5424ffb79ee3e2dbad7ea461dc052435ba91c882cf4d4d7
|
3 |
+
size 85930
|
ppo-Acrobot-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19b5cf3649d50af0e3ca9a67a5baeb8e923622d29e4104c74cd172b8a260ee81
|
3 |
+
size 42482
|
ppo-Acrobot-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-Acrobot-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.4.0a7
|
4 |
+
- PyTorch: 2.3.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -80.3, "std_reward": 15.868522300453813, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-07T14:44:30.767101"}
|
train_eval_metrics.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca85ef79d3e03959e5c08e16a8f0b5976a847219d799cf8d5d304280afadfbb7
|
3 |
+
size 248494
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36ba776fa7b5f6840343cc30c6af1db954ae5e0b642aaa54fad3e536e1c2fc26
|
3 |
+
size 2378
|