dlantonia commited on
Commit
40bf809
1 Parent(s): 4cfcb8c

Initial commit

Browse files
README.md CHANGED
@@ -6,7 +6,7 @@ tags:
6
  - reinforcement-learning
7
  - stable-baselines3
8
  model-index:
9
- - name: DQN
10
  results:
11
  - task:
12
  type: reinforcement-learning
@@ -16,13 +16,13 @@ model-index:
16
  type: Acrobot-v1
17
  metrics:
18
  - type: mean_reward
19
- value: -500.00 +/- 0.00
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
- # **DQN** Agent playing **Acrobot-v1**
25
- This is a trained model of a **DQN** agent playing **Acrobot-v1**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
  and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
 
@@ -43,39 +43,35 @@ pip install rl_zoo3
43
 
44
  ```
45
  # Download model and save it into the logs/ folder
46
- python -m rl_zoo3.load_from_hub --algo dqn --env Acrobot-v1 -orga dlantonia -f logs/
47
- python -m rl_zoo3.enjoy --algo dqn --env Acrobot-v1 -f logs/
48
  ```
49
 
50
  If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
  ```
52
- python -m rl_zoo3.load_from_hub --algo dqn --env Acrobot-v1 -orga dlantonia -f logs/
53
- python -m rl_zoo3.enjoy --algo dqn --env Acrobot-v1 -f logs/
54
  ```
55
 
56
  ## Training (with the RL Zoo)
57
  ```
58
- python -m rl_zoo3.train --algo dqn --env Acrobot-v1 -f logs/
59
  # Upload the model and generate video (when possible)
60
- python -m rl_zoo3.push_to_hub --algo dqn --env Acrobot-v1 -f logs/ -orga dlantonia
61
  ```
62
 
63
  ## Hyperparameters
64
  ```python
65
- OrderedDict([('batch_size', 128),
66
- ('buffer_size', 50000),
67
- ('exploration_final_eps', 0.1),
68
- ('exploration_fraction', 0.12),
69
  ('gamma', 0.99),
70
- ('gradient_steps', -1),
71
- ('learning_rate', 0.00063),
72
- ('learning_starts', 0),
73
- ('n_timesteps', 100000.0),
 
74
  ('policy', 'MlpPolicy'),
75
- ('policy_kwargs', 'dict(net_arch=[256, 256])'),
76
- ('target_update_interval', 250),
77
- ('train_freq', 4),
78
- ('normalize', False)])
79
  ```
80
 
81
  # Environment Arguments
 
6
  - reinforcement-learning
7
  - stable-baselines3
8
  model-index:
9
+ - name: PPO
10
  results:
11
  - task:
12
  type: reinforcement-learning
 
16
  type: Acrobot-v1
17
  metrics:
18
  - type: mean_reward
19
+ value: -80.30 +/- 15.87
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **Acrobot-v1**
25
+ This is a trained model of a **PPO** agent playing **Acrobot-v1**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
  and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
 
 
43
 
44
  ```
45
  # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env Acrobot-v1 -orga dlantonia -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env Acrobot-v1 -f logs/
48
  ```
49
 
50
  If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
  ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env Acrobot-v1 -orga dlantonia -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env Acrobot-v1 -f logs/
54
  ```
55
 
56
  ## Training (with the RL Zoo)
57
  ```
58
+ python -m rl_zoo3.train --algo ppo --env Acrobot-v1 -f logs/
59
  # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env Acrobot-v1 -f logs/ -orga dlantonia
61
  ```
62
 
63
  ## Hyperparameters
64
  ```python
65
+ OrderedDict([('ent_coef', 0.0),
66
+ ('gae_lambda', 0.94),
 
 
67
  ('gamma', 0.99),
68
+ ('n_envs', 16),
69
+ ('n_epochs', 4),
70
+ ('n_steps', 256),
71
+ ('n_timesteps', 1000000.0),
72
+ ('normalize', True),
73
  ('policy', 'MlpPolicy'),
74
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
 
 
 
75
  ```
76
 
77
  # Environment Arguments
args.yml CHANGED
@@ -1,6 +1,6 @@
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
- - dqn
4
  - - conf_file
5
  - null
6
  - - device
@@ -56,7 +56,7 @@
56
  - - save_replay_buffer
57
  - false
58
  - - seed
59
- - 3524042168
60
  - - storage
61
  - null
62
  - - study_name
 
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
+ - ppo
4
  - - conf_file
5
  - null
6
  - - device
 
56
  - - save_replay_buffer
57
  - false
58
  - - seed
59
+ - 33537391
60
  - - storage
61
  - null
62
  - - study_name
config.yml CHANGED
@@ -1,27 +1,19 @@
1
  !!python/object/apply:collections.OrderedDict
2
- - - - batch_size
3
- - 128
4
- - - buffer_size
5
- - 50000
6
- - - exploration_final_eps
7
- - 0.1
8
- - - exploration_fraction
9
- - 0.12
10
  - - gamma
11
  - 0.99
12
- - - gradient_steps
13
- - -1
14
- - - learning_rate
15
- - 0.00063
16
- - - learning_starts
17
- - 0
18
  - - n_timesteps
19
- - 100000.0
 
 
20
  - - policy
21
  - MlpPolicy
22
- - - policy_kwargs
23
- - dict(net_arch=[256, 256])
24
- - - target_update_interval
25
- - 250
26
- - - train_freq
27
- - 4
 
1
  !!python/object/apply:collections.OrderedDict
2
+ - - - ent_coef
3
+ - 0.0
4
+ - - gae_lambda
5
+ - 0.94
 
 
 
 
6
  - - gamma
7
  - 0.99
8
+ - - n_envs
9
+ - 16
10
+ - - n_epochs
11
+ - 4
12
+ - - n_steps
13
+ - 256
14
  - - n_timesteps
15
+ - 1000000.0
16
+ - - normalize
17
+ - true
18
  - - policy
19
  - MlpPolicy
 
 
 
 
 
 
ppo-Acrobot-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43f5bf21c7bc419b1e2751a29d3bd77d683a65293e7215111d33b02eb65957fe
3
+ size 147555
ppo-Acrobot-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.4.0a7
ppo-Acrobot-v1/data ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7be251e851b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be251e85240>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be251e852d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be251e85360>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7be251e853f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7be251e85480>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7be251e85510>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be251e855a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7be251e85630>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be251e856c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be251e85750>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7be251e857e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7be2520b0840>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1003520,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": 0,
28
+ "action_noise": null,
29
+ "start_time": 1723041307235966614,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": null,
33
+ "_last_episode_starts": {
34
+ ":type:": "<class 'numpy.ndarray'>",
35
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
36
+ },
37
+ "_last_original_obs": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWV9QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAQAAAAAAAE/bfz9SCwm9Rsl/P5ZbJz3r0oc9dBlsPXkHfz9JMLI9HDl/PxJvn70OSYe9glHJPeamfz+/g1U9MDd/P7QzoD0tsHe9vz7mvEoxfz+KiKK9961/P8HhTL1pfku9Jo+YvfHlfz9n/+Y8Ysh/P/O1KL1pyoK9DJmfvf55fz8e54I97at/P71oTz0SC3g9vCUHvRb6fz/OI1y8Pf9/Pzkjnjvpecq8T1ACPfSZfz86fWQ9ltN/P/3EFj1UPLK9tIt+PbC5fj8YHsy9KH1/P7JZgT06KrS9yLDrPNcAfz/Ii7S9nMp+P2/Exr1I8eg8HNfLPOvRfz/Qkhk9wv5/P9GXybs4FGa9ePiCvKm8fz/7ojm9Fxd/P5WCrL2cuqw9V3ZGvbb8fz8UJyQ83KV/P2fBVr3Hzrm9TdS2vQ2+fj9QwMq9xF5/P0eSj70ZZLG9o1rTvIL8fz+KISm8f4t/P+YfdL1FBWA9YeY2vZPmfz/VK+Q88Zp/P29hY708c5W7bUtmvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsGhpSMAUOUdJRSlC4="
40
+ },
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0035199999999999676,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwE8AAAAAAACMAWyUSz+MAXSUR0CBG5dkauOkdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBG47VawEAdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBJNVd5Y5ldX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CBJZDqnm7rdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBJaXBP9DQdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0CBJZtjTa0ydX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBJaJSBK+SdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0CBJcNoakyldX2UKGgGR8BWQAAAAAAAaAdLWmgIR0CBJbxVhkRSdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CBJbpHI6sAdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBJgTmnwXqdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CBJj8EV32VdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBJjdi2DxtdX2UKGgGR8BdgAAAAAAAaAdLd2gIR0CBJl5/LDAKdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBJnKLbYbsdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0CBJvp/wy6+dX2UKGgGR8BXgAAAAAAAaAdLX2gIR0CBJv/6wdKedX2UKGgGR8BdwAAAAAAAaAdLeGgIR0CBJ1e8f3evdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBJ4/nnuAqdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CBJ8qfe1rqdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBKA2d/axpdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CBKAphnanKdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0CBKCH9m6GydX2UKGgGR8BWAAAAAAAAaAdLWWgIR0CBKDRjSXt0dX2UKGgGR8BYwAAAAAAAaAdLZGgIR0CBKFR6Ww/xdX2UKGgGR8BYgAAAAAAAaAdLY2gIR0CBKGI/qxC6dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBKGX5WRzSdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBKHGEPDpDdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0CBKHze40/GdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0CBKHNRm9QGdX2UKGgGR8Bl4AAAAAAAaAdLsGgIR0CBKMapgkTpdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CBKP9Dx9XtdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBKPnjABT5dX2UKGgGR8BXAAAAAAAAaAdLXWgIR0CBKYJ7b+LndX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CBKW2bXpW4dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBKXoFmnO0dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBKbgflp49dX2UKGgGR8BSwAAAAAAAaAdLTGgIR0CBKgtHxz7udX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBKhBnBciXdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBKkupS75EdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CBKkndfsu4dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBKmsunMt9dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBKmHaews5dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CBKno+OfdzdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0CBKqLQ5WBCdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CBKupBHCoCdX2UKGgGR8BZQAAAAAAAaAdLZmgIR0CBKwvxH5JsdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CBKzV7x/d7dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBK3ZTyauwdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBNLFJg9eQdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBNMepXIU8dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CBNQKMvRJFdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0CBOA1uzhP1dX2UKGgGR8BXgAAAAAAAaAdLX2gIR0CBOCXyAhB7dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBODGJemeldX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBOFQQ+UyIdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0CBOEuM+/xldX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBOIwSrYGudX2UKGgGR8BUQAAAAAAAaAdLUmgIR0CBOMIrvsqsdX2UKGgGR8BjQAAAAAAAaAdLm2gIR0CBOL2aDwpfdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBOMdT5wfhdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CBOOEvCdjHdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0CBOTteD3/QdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBOZrQgLZ0dX2UKGgGR8BSgAAAAAAAaAdLS2gIR0CBOeh1Tzd2dX2UKGgGR8BVwAAAAAAAaAdLWGgIR0CBOcVh1DBudX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CBOexUvPC3dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBOi2m51/2dX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CBOjwHZ9NOdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0CBOlllsguAdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBOl70nPVvdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CBOo5/9YOldX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBOsh/RVp9dX2UKGgGR8BXAAAAAAAAaAdLXWgIR0CBOy7J4jbBdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0CBO067ulXSdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBO2ID5j6OdX2UKGgGR8BdwAAAAAAAaAdLeGgIR0CBO4txMnJDdX2UKGgGR8BYAAAAAAAAaAdLYWgIR0CBO5kz41xbdX2UKGgGR8BgwAAAAAAAaAdLh2gIR0CBO+NMGorGdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBPAItUXHjdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CBPEIvalDXdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0CBPEB/ZuhsdX2UKGgGR8BfgAAAAAAAaAdLf2gIR0CBPFoPkJa8dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBPI0P6KtQdX2UKGgGR8BXQAAAAAAAaAdLXmgIR0CBPIXhwVCYdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CBPKRdQfp2dX2UKGgGR8BUQAAAAAAAaAdLUmgIR0CBPKHfuTibdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0CBPMw7DEWJdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CBPNghr30xdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBPUAeaKDTdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CBPT4TsY2sdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBPX11W8yvdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CBPaFev6j4dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBPh+fh/AkdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBPnlUZNwjdX2UKGgGR8BXwAAAAAAAaAdLYGgIR0CBPmq/dqL1dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CBPnvKlpGndX2UKGgGR8BVgAAAAAAAaAdLV2gIR0CBPqLS/j82dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CBPsphnanKdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CBPtoWYWtVdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 980,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVNAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/2w9JwdYx4sGUaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD/bD0lB1jHiQZRoC0sGhZRoGXSUUpSMCGxvd19yZXBylIxDWyAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgLTEyLjU2NjM3MSAtMjguMjc0MzM0XZSMCWhpZ2hfcmVwcpSMPVsgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgMTIuNTY2MzcxIDI4LjI3NDMzNF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True]",
60
+ "bounded_above": "[ True True True True True True]",
61
+ "_shape": [
62
+ 6
63
+ ],
64
+ "low": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
65
+ "high": "[ 1. 1. 1. 1. 12.566371 28.274334]",
66
+ "low_repr": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
67
+ "high_repr": "[ 1. 1. 1. 1. 12.566371 28.274334]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
73
+ "n": "3",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 256,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.94,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "rollout_buffer_class": {
87
+ ":type:": "<class 'abc.ABCMeta'>",
88
+ ":serialized:": "gAWVNgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwNUm9sbG91dEJ1ZmZlcpSTlC4=",
89
+ "__module__": "stable_baselines3.common.buffers",
90
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}",
91
+ "__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
92
+ "__init__": "<function RolloutBuffer.__init__ at 0x7be251febf40>",
93
+ "reset": "<function RolloutBuffer.reset at 0x7be251ff0040>",
94
+ "compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x7be251ff00d0>",
95
+ "add": "<function RolloutBuffer.add at 0x7be251ff0160>",
96
+ "get": "<function RolloutBuffer.get at 0x7be251ff01f0>",
97
+ "_get_samples": "<function RolloutBuffer._get_samples at 0x7be251ff0280>",
98
+ "__abstractmethods__": "frozenset()",
99
+ "_abc_impl": "<_abc._abc_data object at 0x7be2520b3980>"
100
+ },
101
+ "rollout_buffer_kwargs": {},
102
+ "batch_size": 64,
103
+ "n_epochs": 4,
104
+ "clip_range": {
105
+ ":type:": "<class 'function'>",
106
+ ":serialized:": "gAWVLgUAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUaAqFlGgMhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUaBGFlCl0lFKUfZQoaBaMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpRoGIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlGgajEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgdKVKUhZR0lFKUaCRoQ32UfZQoaBhoN2gnjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UaCl9lGgrTmgsTmgtaD5oLk5oL2gxaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgzKYwBX5SFlGg2jARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaDxOTmgdKVKUhZR0lFKUaCRoVH2UfZQoaBhoS2gnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWg+aC5OaC9oMUc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaFxdlGhefZR1hpSGUjCFlFKUhZRoXF2UaF59lHWGlIZSMC4="
107
+ },
108
+ "clip_range_vf": null,
109
+ "normalize_advantage": true,
110
+ "target_kl": null,
111
+ "lr_schedule": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gAWVoAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgJKYwBX5SFlGgOjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaBVOTmgdKVKUhZR0lFKUaCRoPn2UfZQoaBhoNWgnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWgZaC5OaC9oMUc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEZdlGhIfZR1hpSGUjAu"
114
+ }
115
+ }
ppo-Acrobot-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4284a4e7d988983a5424ffb79ee3e2dbad7ea461dc052435ba91c882cf4d4d7
3
+ size 85930
ppo-Acrobot-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19b5cf3649d50af0e3ca9a67a5baeb8e923622d29e4104c74cd172b8a260ee81
3
+ size 42482
ppo-Acrobot-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-Acrobot-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.4.0a7
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-07T14:28:27.969199"}
 
1
+ {"mean_reward": -80.3, "std_reward": 15.868522300453813, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-07T14:44:30.767101"}
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4412ff081b7a60b65bfcb1637229ad40a473c7fab449b3690d714eb313d0f254
3
- size 22737
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca85ef79d3e03959e5c08e16a8f0b5976a847219d799cf8d5d304280afadfbb7
3
+ size 248494
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36ba776fa7b5f6840343cc30c6af1db954ae5e0b642aaa54fad3e536e1c2fc26
3
+ size 2378