dlantonia commited on
Commit
cadaf7b
1 Parent(s): a39f2d1

Upload PPO HumanoidStandup-v4 trained agent

Browse files
HumanoidStandup-v4.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:12a2d7565471c411c567a44433dd6e73de4c44efc3a75c306b3d6b6b1919df29
3
- size 765837
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e92503e0468f5b4d244f7adebc3c13e6e0054bf202bb23ef94e877708138d9d
3
+ size 762357
HumanoidStandup-v4/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7c6dbcde7490>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c6dbcde7520>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c6dbcde75b0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c6dbcde7640>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7c6dbcde76d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7c6dbcde7760>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c6dbcde77f0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c6dbcde7880>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7c6dbcde7910>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c6dbcde79a0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c6dbcde7a30>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c6dbcde7ac0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7c6dbcd98800>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1007616,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1723477231094352429,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWV9hcAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAFwAAAAAAAAZ5tz80W1w+aJl4PRMYbj+pLCg8fdWIPjCtk7+hkWS/mdUdPyQSFL8dBhy+N8xVP6gc975rKUM/INeOvFvQgD+wLMi9W2SDPx4Gtz+DtQ0/eFVivx0VPj/bffK+6cUQPrWoFD9LeWc+DiLXP2J18r7sU1M/yRkYwMCieb8rrXK+58c5P2NcmT+Gj6w8tBxwP+NbVT+puJ4/w3Qdvxn5ir+ZBKc+2cRNvx0+qj+1f6S/jpdHPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw1Qs/eDtnP/18jr+xiCK+XV+yP7xhCT/HcYK+1lNovfejuD9J7d420rtHvxdcBEBFE/I/m1ddv05tsz6vWPc9yHOrv4DOb75E1+49l2ATNpiMLD9NHp0/ymR0P/ptfb8ozLC/nImKv3btg7/yMRe/W9CPv97vtzYR7k4+mD7qPl7+K78EFgy+Yd9mP/rBhr/1QRo+Ic0Av0o2mL/NZY82qJITvzNXfz9sLGo9oo7yvhee4j9nRbg+jbhDP7wD+j3wK6m/NsUvNufmCb906YE/7TDEPqjVJb/3w80/sqIFPxvaVj8N/IY+GZ2Lv2tg5zWzGXe+LpjYPpQ9Vb+1WPS8yBg/v8ByOT9vGhW/bBVgPnz9iL/NZY825eoWv9Qn9j3XfJ6+jf4sv8mBnD6UW5I+/1sGP30PuT6vTcS+NsUvNhssBr90CsY+PE6pPfMPQL8Zo5S+W3jDvTQFKD/K6tI+Y6RmPmtg5zU9OYq9F8kAv2UT3b6FJCy/8iOHPpoVHT/gHZe+yCMHv1exuz5C+tk1DXTrvvFPGL/UaDi/J9ifviqCnT5IRis/q/TRvXSxcL5YOWw/waaiNS7gur5NF+K+gl0jvxqgDT+VQvA+JS0kv/lIi7521f4+eyUHP0L62TVIGBS/008Ov3Q1NL+2ddM9g2FsPpimUL4IbQ+9j7U+vUtiMz/BpqI1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1HYqv8602j8SDIs8PKwCwKofBL/vOoy/B1R3PyWGFcBOLR2/a6i8vwQ9g7800DRAeEsfP4hHHMAoO28+dezVvwACpb4gqjdA77qWPiQFDj6fJgc9odhGP8j3i76KiFc/oh6QPtEpnz3AmKs8dq+hPhaj5r2zyYo+oh6QPtEpnz3AmKs8dq+hPhaj5r2zyYo+mr2Iv0qWLb/a4iS+aF7NvVYBYz+y41o/O4ibv+qS6T7jhhG/tBVBPHbpIT9d40g/O4ibv+qS6T7jhhG/tBVBPHbpIT9d40g/PQnRvoouJj/Pepk/Z2zyv5SIDD6n8ae+pOKZv9YLlj+IeaY/YWHVv1miwT7FmKe/7CO5vyM0mj1j48y/q42gv5gvBsA6QsU+sP0AwK+m2L7Sv7C/Cc9/v92twb/42pU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiXZhPrAGlr+t1Yi/tamRvxvDij8bwnA/kN73vg83pL/AYTQ/Pj+fP2mTp79iT4c/8qyJv5Jdj79j8po/zG0mv7cgiz8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC59iU51feQvXkjK7yblr467rUIPE0yL771jwA9PP3TvOwAnb1xrAk9cRcAPeQi+b1KRSM+PIanvvXxqTy74WI961qcO9RjBL+eRY28QPgmvaAMMD3Zc427AlLpPDJbP77QJPG7Sua9PGItrjzfSbs7MzeQPJ1x471IvFI9nOGMv5bOjr9ZCoS/X6WDv8d9dT9S1Tw95EMovR1nmbxwBHk8Yoj2vBNiDr6LKwy8Z8J3PMK8truKCmu6IFLIO1IGvr2taeK9KXpoPs//P70KtIe7FE0RvVKgpL7KlMs9Eom7vfQXxzy4iH06lIJfvL2nfr7/kCE+2XiTvYbZTLxjiCO7XIKKPeuRZr6AwHu9eBq/vfvwFb1Ocnq8SK5oPCoikb5JjZ69ZdjuvSv/CD3qvu+53Mpqvf5rGr5Ek6s/E3jNPv0isbtacU8/3uQEPusvUD6Hetu+FapYvygNgz8bpXa/ApxJv9mAIT//iDq+X3MGvpQ0A7+loTg/T33GvugCCD8GiKw/daOZPgf2j7/Z6yc/e8eJvqe9ij67CYO+xm8ZPwwEtj5yG7Y/FX23v0RiEr9fCOQ9MpUgvjXStL8TbKQ/zuxJQKVXOz4vmsW/u4/tvFpXw7wQxyC/hnSLPWTX+j0SKwW+xPmwvx0Mjj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNScPv1zBD/GoYy/UwqHvl99lD+GlGE/r3ZVvl3qU74015w/Se3eNmbP+L5JTWM/8IpkP0J/lL/zrH6+xoOfvPWjaL9zsQW/jwM4vpdgEzZ6yrU/uF6iP/esXT9O/KS/De26v5/e+L+dPV2/1ZRjv2hgtL/e77c29y16PYjdsz0X20e/HAx9vtYe7T7VnoG//HAqPthm2L73m4S/zWWPNmE4Lb8fKcI+foo1vmo3R79+AOo++vaVPu7WID+eRrU+7/+2vjbFLzaUGQG/PZ0OPyqLaj5BtXG/i4iLPsniiz6/pTg/zK38PrZUHL5rYOc1GDDCvfMwhz5FbCy/VnV/vdu8j78JmBw/XHtDv95skT64Kni/zWWPNsjMV722O86+m9qBvqgMWb91Eq49CwqvPlwxhj5aAzA/L0dvvjbFLzYX8Sk9wZWfva0ODT4xLYK/gekfvvvLhT2jiNo+JrhCP+4tyD1rYOc1OdsmPyhCbL/adwC94VLbvik30jwnlSw/gDEdPa+jUr9zz5A+QvrZNSxRNL5jkE+/6ZYPv+TMUb5QgBw+NIoFPy09AD4pf/S+oYMcP8GmojX/406/+tMhv1x3er/ufY8+VVeSPiMAor6IIkG+MaSBPgt0rD5C+tk1oOssvwMvJL9Kk1a/X4AXvWEFJD2mQ6C9ekxUPs6Vhr4jOA4/waaiNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOoZD9zcRg/Z1o5vxpOAb9imuM+FRm3vi7Reb/dQUe/GjWmvpmXEr9dMgg/iOwBPrIpgL8ETkO/RpLcvm7sCr8fevs+gfQAPnuHI8B4WbA+a/3kv8E63j/ILwRAdtAnwILGjL64zY7A3OegPwY2gz4n/oy/+nBzwILGjL64zY7A3OegPwY2gz4n/oy/+nBzwB8gUz9efJQ+z+rOPZueAj/Q0zW/1ONpvza6NT9kMIo+W0mMPbITWz72lY2+KdKcvja6NT9kMIo+W0mMPbITWz72lY2+KdKcvv4LLj9cfZQ9MbXbPD9uKr/Mcfw+teNZvj1aOj8PaIU7+RzFPAyuBL9ayqw+kRVNPZYn374Pyw6/p5r0vqucFj836hS/5IJKP6NX4L7JrBG/AprXvoCE9T6W6eO+rUscPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMTj79puGe/rdWIvyQ+iz+f8JO/KgaxPy+SbD9uNhS++F2ev4HEWb/ytHM/v8JeP/Ksib8JuwG/q/KEv1+7xb63IIs/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAufYlOdX3kL15Iyu8m5a+Ou61CDxNMi++9Y8APTz907zsAJ29cawJPXEXAD3kIvm9SkUjPjyGp7718ak8u+FiPetanDvUYwS/nkWNvED4Jr2gDDA92XONuwJS6TwyWz++0CTxu0rmvTxiLa4830m7OzM3kDydceO9oRh3veFIeT5gqtE8g4wevb3+mjxFb66+UtU8PeRDKL0dZ5m8cAR5PGKI9rwTYg6+iysMvGfCdzzCvLa7igpruiBSyDtSBr69rWnivSl6aD7P/z+9CrSHuxRNEb1SoKS+ypTLPRKJu730F8c8uIh9OpSCX7y9p36+/5AhPtl4k72G2Uy8Y4gju1yCij3rkWa+gMB7vXgav7378BW9TnJ6vEiuaDwqIpG+SY2evWXY7r0r/wg96r7vudzKar3+axq+iqm4P/GJjT7/nhm+cEdhP3DTbDyzLog/IuNvv/JtQL8gfqM/OdrRvvwnvL4aXVg/BLE3PhnkgL6cjkk6z0MWP9lBW78Sbwk/AfVnP+5pQz8nJqG/AkWMPxUMnb4yvbY+b/tSPbSVnT/kTIu/OBWXPLvGsz7jIoA/GgAQv/qFLD7xYug+HmYAv9yQ2zw/Y3U/MSCtP1tkg7/zoZW/Nw3PvznlBz8I/wI/dCC7v7dqmT/4uVQ/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrzIz9E1nY/xdWLv5j8T76Wf7w/ZGUgP6nUhb6NU9K9zta8P0nt3jYzl5u+gJLZP7P84D9E6sy/k8hEP0WvkT7WEZq/HtcevxdxrT6XYBM2SwkmP9LdnT/Vr4A/qc6Hv+78qL/LxJ6/KCSGv9TCH7+IgIu/3u+3Nh0UYD71OfA+uQ0dvzzUXb07RjE/KfSZv61VIT6zZhC/+4+Vv81ljzYiKki/XlFrPy+8yD0gQZS+WUmJP1JbKz0R2ko/MUekO1acRb82xS82kZU8v39bez9d5M0+zuzrvggKMj8P2Ak+CfVdPw91Ej7b0M6+a2DnNW8zID09GiA+zH2wvoBhrD1PSUy/2TaCPwTdQL9h/Qc/+cpiv81ljzaceYs+twMvvhT1N714Jna/jYuFP36/tj98+Jg+ZipDPxc2i782xS826qGhPpoM/j0Dfoo+2oSNv35smD/Xi7s/XhvmPiVbUD/XPYq/a2DnNQIlhz/EeUC/uyUevVdpBr74B9A9OAavP5i8aD4EWVm/R7RKP0L62TU1avC95iNkv+VeCL8atG+9+/kFPv1kDD+PaHo+MO0Evw/N4z7BpqI109dMv8D2Gb95XHO/FX2ZPoueqT5fTLO+VvFevm6ihj48I6U+QvrZNTXDA78EBuC+So1Hv1jLSDxUaeg+JwGfvj3DMr1OhQ++32aZP8GmojUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsTIa9tTycv+rMmb9BMqI/nb4qv5Swej+PLAo+i9w0P8LmAb/W5X4/yc27vlORBL+p0HW8UdEKP3lO1bx+b1I/lK2kO8P/6L5JQyo/eO0Yvo4MozyGtWU8Q/E1v+o3Nj8TgyE/83AlvqtHBjyJTPM7SGKSvpP8Xj4TgyE/83AlvqtHBjyJTPM7SGKSvpP8Xj6eBCa/grkAwOZOk7taFLi/HwseP68tLUDg08+/MjhVPp5xpj5nWZM9r5avPuPtBEDg08+/MjhVPp5xpj5nWZM9r5avPuPtBEBGjNk+mpwAwBt2az8bhpI+Q7zKPuMvqD9kD4Y/8Prsv+wmWz82sCA+4CXQPvyO1T8/sA8/3+//PjZRQj/5XQY/qfmEP24D+r7Wxpu+Qw2NvdTeMj/DA5k+cpuDPxwGlz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADE840/l8iIP3WVmr7x0BM+T7KxPloZAr6Anmg/3Ct7P3LXQz8FIhe/JWCevoLch78MBZY/Q4iNP6vyhL+LMY+/tyCLPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALn2JTnV95C9eSMrvJuWvjrutQg8TTIvvvWPAD08/dO87ACdvXGsCT1xFwA95CL5vYl+zb0fHiw9nIervq/7OD8UCJs/oOU8P55FjbxA+Ca9oAwwPdlzjbsCUuk8Mls/vtAk8btK5r08Yi2uPN9JuzszN5A8nXHjvaEYd73hSHk+YKrRPIOMHr29/po8RW+uvp2aXr40mpC+FhrrPb/saz44EL++2p6fvosrDLxnwnc8wry2u4oKa7ogUsg7Uga+va1p4r0pemg+z/8/vQq0h7sUTRG9UqCkvsqUyz0Sibu99BfHPLiIfTqUgl+8vad+vv+QIT7ZeJO9htlMvGOII7tcgoo965FmvoDAe714Gr+9+/AVvU5yerxIrmg8KiKRvteXkD5WFYY+kJ9AvvXV8L4wSCw/WNJgPgkbsT+OmrY9mjd8Puasfj80VN+9kbJAP0hAsb8SJqy/cYY1P6TIXr/WyIC9VDBZPwnU7b7YSya/T2eYPo/+Zj8IuNg+KO1rP5g8uT+oaTS+GppVv+FSqj4awrC/w8Z/vpIrKj/RTIo9pMKdPiw/Pr9di4o/wE2bvx0k9b29+Ne/o/oIv8bJwT9hEFY/0XZSvp6jhL9D32o/briMvTHimD6Bwo4/YOArPg0TMD+84sC/4dHnvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAQ0M//bh9P3l7lb9YgSW+WvKfPwuiOD/TTi6+2YK1vT7txz9J7d42ZiZdvyV3FEAtqv0/5R7XvoiSrT/yRS493oyzv+ilQTuBxBk/l2ATNp0UiT66Mo8/NTdwP/zSO7+q75i/w6U0v2Ooib90D9G+Ky9uv97vtzYR4QI+Ef++PsELBb8OW449Q0JJPxr5mr/yBhE+v4Mlv+ecib/NZY82gYM4v0Y/kz8WGGk+7v54PUo5xz+EV3C+5zZXP0axUr4NrIq/NsUvNtJdPL+BS5k/mqn9PlMDuL3YPas/I4y5vFeDaz9Hzq297RFUv2tg5zXZ1rY+KpP9PtM9577C8748iKHvvpc2sD8j8xG/bXMMP40zlL/NZY82Gq+zuxV0qT6OxT09hqp2v/Qdvj89ybE/0uoEP0ckFz80Uqm/NsUvNvLE2L1cRgk/9QK0Pn+Cg78hl50/rQmFP9x5Kj//7hk/4dBuv2tg5zVmnYi+6J5JPqNEbr6dYlu/RghXPx/pXD+KKSG/qDDAviciLT9C+tk1M6UGv3zwnL5PQxy/eOPUvuXmLj+UMG0/oFuuvsn5Mb5D/Zk/waaiNbVt6b7NzXm+UXs/v0EG4z6zTh0/Pj85v/Ekk74o17A+iVBDP0L62TU5FDW/uiEKv8IfNb8S3og9gQkLPscCPL5+nbG9GjZbvs9xJj7BpqI1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVrkMv2gRtD54000+Bw29v0WgF797mbw91lAZP5phy798+FK/YS1jv4t5xL9PRwhA3WUNP5F9zb9EXzu/gYlqv2jBwr+iuwlAF3mKv6bI5z6A1JW+rkTWPl17Dz9g4FO/1ElEv/9+Z7+YZ5I+2oWgvtpfYb72eYu/1ElEv/9+Z7+YZ5I+2oWgvtpfYb72eYu/XeBmPxuP4T7JHkI9FMpxP+mCR78Ssvy+5ChCP3fJ7j45fIY96xrlPl3wm76dIOW95ChCP3fJ7j45fIY96xrlPl3wm76dIOW9iAtQvNKxFb+/D0G/W91vPhqoAr8itlY/wMRzPZoVOr+Xjj+/gPOLPtEu+b7X4EQ/8kfAvwGUo7+RB5u+0CZ0PUAT179xCY8/0siev8lYjL8TMZW+qmVGPRINrL8CcSg/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxPONP5fIiD/NOqQ+JD6LP5/wk78qBrE/L5JsP05gFD/4XZ6/c9S/P/K0cz9iT4c/4ECdvkOIjT+r8oS/oltRv7cgiz8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC59iU51feQvXkjK7yblr467rUIPE0yL75fpyg+WE0zPkuGHz/dp4++q3C+vjZkijxPoCjAMdgYQACwjb/VDhHA8cC3v4zJjj+eRY28QPgmvaAMMD3Zc427AlLpPDJbP77QJPG7Sua9PGItrjzfSbs7MzeQPJ1x472hGHe94Uh5PmCq0TyDjB69vf6aPEVvrr5S1Tw95EMovR1nmbxwBHk8Yoj2vBNiDr6LKwy8Z8J3PMK8truKCmu6IFLIO1IGvr2taeK9KXpoPs//P70KtIe7FE0RvVKgpL7KlMs9Eom7vfQXxzy4iH06lIJfvL2nfr7/kCE+2XiTvYbZTLxjiCO7XIKKPeuRZr6AwHu9eBq/vfvwFb1Ocnq8SK5oPCoikb4HORe+pP5rvtluwb7jiKg+pfOyPsvTkr6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRNeAGGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -39,22 +39,22 @@
39
  },
40
  "_last_original_obs": {
41
  ":type:": "<class 'numpy.ndarray'>",
42
- ":serialized:": "gAWVdi8AAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYALwAAAAAAALZTYOvFzbk/v24KTlYF8D++UpCOSJt3PwoyN0rZ5Ha/emjKzMFAgr8p6ndfOtl3v3NpH2qwP3G/huzGK5qJdD9OpZPhc6yCvxR0PusabmI/SJz55b4Vgr9ExN9tIbxqP7XcZDm2NYE/esYJ7fZGfj/hy005ohCAP79LMYbzZ4M/hZPsifRdgL+0UOyadgtyP9iQvYoyZl+/o8m4aiPTgj8IUzyniXN8v6r4+PtYVYK/4KORS0lYXr92GzIECTt3Pxxsni5GR3E/8bbdwBsigz96ajKQW9hyP4XjI9QLaYA/Vn3GCOUmfj8RuyWk3ZuBPxQly79M52Y/gL8IXHc1Ob9wLtkfm3NiP77y4scRrX0/yng0kLvmdL+yT7r4+5R9PyhM/PB9aVi/wIuCgwafdr9+ep3CVLlyP4DDo/WAsiO/wCj2SnyPUj/RKL+7hoiDv6bFlYOxHYG/FXJnf+RJgz9Qvl/km25FvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAikk/IoikpT8NDRt/0Gr+PxzSNp/xu/4/fMCAmsyJpD+i262PX6qavyZ8y+HuHTY/wfoQ9NTsD8AmkAmz2S+2P5n76gt1mqy/Cxxn6J7QIUAt9jrwtmCEP279UyOLj7s/mM1MqQMivT9zZZOLqt5kP22GE2qLSl2/7lsdQvha+r6oaKSd4gXfv243VeuKuIk/qUnpXcARgb/9C1qEdxgCQEH1A9Mezqo/wJFgIP7CrD8iINb5u4y1P98Gbf6ls0E/4ORfPtL8Pb82iYVaOIs9v+9iSPruXd2/s4nj/wWpkT/IST/SZ2B6v7rk9pf7dhpA+hmTtpTvqj99tRMpmxvCP5cp4FP0wcc/9ScdcwmBqz+d3K26/GpwvxJYTdP6jlg/KBQJPN774T/wIoyGXVndv4zl01D2FJA/fNfX/soBE0DtOHDj5xOgP5W7F8lPNuc/LjMADxwR6D+Wq5QsBLnBP6fmnv8u15e/yMuXI408cj+24yonihj2PzNfUhrhmdG/A9OiVt+5pj9eIZ5uqgsGQETVCEUOqpg/KxKDanXx6z84kerTqIbsPxU6Vo+wgsA/GIhh2VJjnb83Dr2CcHZxP6DWeSXG0fM/8qwPIMiNx78f2KjeX/akP7uyzL46Rvw/mFt7UznhqD9krkJIK7vCP8BNar6U4Mc/TlJoqglYqb8gB+vxQ/lpv8lIEE9Bllm/0lpbXRip4j+NkgAMkerbP+Y7q+w6GZI/fNfX/soBE0CIEqrxlnaTP62MMu0Fluc/PlGFxeAR6D+e/hG2H3W6v6c1q700YZC/fffo1nVVYr/Snsbcs0n2P5UxsRn6Zso/kVGQGabtnj9eIZ5uqgsGQPalitUjGIo/vNT1JElG7D+rZ2sWwobsPwpTcmI45LW/AHORBehPlL+SBUCyiZxfv1pkZI5k8fM/z+MHpnIJvz+fzjglOsycP7uyzL46Rvw/UKo5ynUevD/fpt4AQFfLP+iE3u3M2tM/sT7U/TpRwb/wouwC/iGGvxQXcIbuHpC/BzxKbzuD4r8sTsigjsTZv7/a6UHI9Ka/fnZmIcmT+j8yjsYQ3xS0PyiRK4N5D6E/mjeRSu8Cuj9/avJH8M6mv/rNEb4I3nu/WbUjtS0bgb/kRd9y6sjFvwmn51c6odK/m3FHMEVkkb99O1VWMqzzP/h737JfVb8/l3IYONH0yT9DUQmdeg/UP89ogdcn/sE/RIkJq7FTfL96S8hYi/iLPxBUsjl5BuK/PZwbetZ72z+5U7eKX8ihv352ZiHJk/o/o2C0WvRqtT9WudAInyOeP6YubMV1jbo/1gqVMVYXpj8uKRHLLWx2v8DDBVrEJ3w/Xd5UnHA6xL/lRgRJX0/TPwW09sMtKIS/fTtVVjKs8z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZplubexyDP6vFBn5nyHE/RyAs9q66gD+jNt9d1Ktcv1/1Wsg3moI/DrtVCR2/Yj91qqUCwkuDPwJiTPq+Uoo/+ulBlBQBkD/HlT9Iq1Biv3oiDXNL6IU/hEs3opSyPT982nmrxQSJP3AeE6rTL4o/gn+4nRUSkD/c18ROtUJiv3iQQ8m/e4Y/lS4WPEDUPT+x7pQh6XCIP+rh86/vgJQ/z2v4D1hskj+Jyd8r9/hjv8kFawZbuoY/CBpshJ77Cz/nf2EHLKqIP/NnAWRGupk/DkmZyW52kj/fyFuKRUplvw43ubELtYY/aeThLzxZXj/nf2EHLKqIP/NnAWRGupk/DkmZyW52kj/fyFuKRUplvw43ubELtYY/aeThLzxZXj+mnlNhjaBzP73ug1rpa34/oCRGh1tgkT9BW/zlpSRhv7adL9SploY/In9xPhcBWD9byoBY2gtzP9xBK60eamc/4FdHFzJWkT/BoUcwHSZgv8m4uQLbm4Y/MOBeKz0nI79byoBY2gtzP9xBK60eamc/4FdHFzJWkT/BoUcwHSZgv8m4uQLbm4Y/MOBeKz0nI7+bMTeNDs2CPyNLgxGhfmw/VHNgNDY7gj/+L5SF2t9dv27G68C/OoM/Sw70zwGTZT/Shhthg0qDP5e/4CTJ/4Q/OtN8nlv3YT+awnl9ndxVPxiqJyXUgn8/Z/2U8W7tUD+gHJElkkxlP0JA8J7BlY0/PsP/THSQhz8eZOVzSCtcv+o8gTF4t4Q/kLuYadFnSb/gIOKEW0tlPzboWuyXg44/XjLrcHuHiD9P2PHVT4hYv7VvpTOf8YQ/EwyJLlrlTL8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIvT3w4Iguz/vZDxIauPvP0BNo3IYRUC/XL24n/7haL9JsySHquGAvyRe6syMiXi/iKGHP4JwXb9N6vx93kByvyT+LdSYEWY/wv78iJ0BZr9ON5Io8Et8P5BbS1Jcj1I/EDClennVQD/MrochYsRgPyx3apGgIn+/9Ee0wnr0fb+WNn6dADp6P0o3wqt+I4G/hlOsXPSzY7/w2uTcM7hnP7EJXe16qn6/NhW4HyU9cb+oGLYYh+pdPwoItXKq0WO/oHHia565Vb8YmsPXCW5ePzg1BAB4AIG/ZjzENBucb78/robiOkKBP93fDJFEd4E/4lmTKrYbf788z89z63FrP9PKtEPD94K/As1gkHU5ej9Qcg9uUnVyP1JgajiVdH6/bJ26od/Mbz9SeUP9rI9zv2hFPc5em28/Di4Jh6I0eD/Nh/OIzCSBv5q2HgjDim6/SGRXSRIhbT+DKg4MJ3ZwvxrtKlJzTHM/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADS0PJoqX2lP4qiUIKQY/4/RDhO/eq1/j/omP3sroCkPyEaoQWB3oa/gtBy6OTsMD+/T13GcOkPwCeBktNSNrY/gvBTLxlDmL8LHGfontAhQGjs/Vf2VoQ/lE+IR96Kuz8+USudzR+9P++kbAgLNGY/FePpNoSVQ78Td9CAcdz2PkrB5UA+BN+/jEbsMQI5iz+XeA1vINtmv/0LWoR3GAJAQ0yL48LLqj8CoxL5JLysP8JjYhq5ibU/+KvAmF2bNz/AgvSIZlgpP2JufrcD0SI/C8oNjlJZ3b/TT/CHclaNP5mfMoWBdGY/uuT2l/t2GkAoEWJ0kGKrP4JxTSweI8I/DJzAYmbrxz+6EMKuD/qrP92Y0ytNuGG/BUfv3MUaVT9I5zTxOATiP79WtUVbqt2/pt3Z2JsYiz9819f+ygETQALh0SUPcaA/mqa6U2A55z+A5LjpaiToP5aZ2XvRLMI/6kD+MGqygr+xixnd3JxdP1Pyvo2MHPY/kQ/F9bUG0r9cygHQTQiSP14hnm6qCwZAX/neNwwEmT9AfUvE6PPrPwOcyH5pmew/hdX8ikUEwT+wHuCvc16Fv+npQondI1o/P08scQ3V8z87gv09oULIvwGeSOAWd44/u7LMvjpG/D8zf4e4VTOpP77BxBZovcI/3pui4qH0xz+Qd7CNKsmpv5oBdDBujXC/Sp0LklQKXb+oeo6DDKniP5Tk3CMRI9w/aB0ST0WPlD9819f+ygETQNbJKk5575Q/zF9DCyeR5z/PzaIisxfoP8KTCYPXqbu/xbpgS+LTkb89J3873Vplv/3N4EfwRvY/ZEZlOhSPyz8lU/fW0yihP14hnm6qCwZArlIwG0JnjD9Mqle0h0LsP+cj9MazjOw/7wIIHXRbt7+Lb5kspqeTv8bm+RSKU2C/SzK1xSTw8z/LUhbIwY/APy/YwKNs35s/u7LMvjpG/D9WkprRKva7P7tS8y9+css/FmTETlvj0z+lk7R3iVbBv2Q8FjXgYYG/1pJS7ggIjb9Fx3JgPJHiv5c4IJAytNm/GlGDZmt4o79+dmYhyZP6P2K++WSlALQ/UbQ6XUwyoT/b0vontBe6PyFCnh6u8aa/+JMTr/oGfL92hDbo7/iAvxrSX3cX5sW/FBGNnUad0r/OipltPYqRv307VVYyrPM/UdmX8Cs0vz9WlAYepAHKP7zLDj5PBNQ/zenPOh/3wT+zoFyU22l9v2T1PyLSi4w/9+KslXMI4r+ejms0kGjbP/2haMa+U6K/fnZmIcmT+j+wdFntpz21P7Jfjulxjp4/PxnERVVmuj/K5YXutBamP3COAQt2u3e/YLpMsNQgfj9aCH3jiFvEv1Gs7FO+NtM/LM2n8gM8iL99O1VWMqzzPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACT2+pM+j1w/e8pqERgSgb9nvOv7tHNvvxClXOzw+1w/gNR/y8KZcL/RgW8jnfphP4cgUkrHUF4/QGM0axE9Kj/4xjazO8JyP6Z7h6lm41Q/nUTy559QYr8Yi2Ci6oE3P5kLsHV9hHe/kMAhDbNTOD8slIa/kENyP/Lq38H/mVQ/xIogrhehaL/JPOnh4hI4P1lZYB8JE2G/pZ3uZjxQez/QYSFdT4Rzv4oRUMX0qGE/wrOk2x19bL9b2Y7LtFY6PzHrzz2kAWK/qrURYd+4YT+S2UkvAHhzv2R7OJt7kWI/A9q5PbOLbL924MVgF4hTvzHrzz2kAWK/qrURYd+4YT+S2UkvAHhzv2R7OJt7kWI/A9q5PbOLbL924MVgF4hTv2/ToqFVx1o/VqyT+q7Rcr+9CqbnCLdHPzbC2Q8Gykw/RnvmqaYOar8laMij3ogjv9QQLrlIOFk/LTCP8QhPgb9I5515enNIP4BwvA2pTVA/gmmhgk4lar/zbWchXL9Yv9QQLrlIOFk/LTCP8QhPgb9I5515enNIP4BwvA2pTVA/gmmhgk4lar/zbWchXL9YvyVE4jxhbXs/gF6wEWrIDb/SIT6KwN99vyhxGiaUQF4/QAIf3c96db90HytoYf9Bvxhm5xilnXs/q7RF51A4ZT+bXhn+IFCEvxCHVYoxMGk/Rpyr2Sg1eL+hQ1qQTqZTv9QaoZdDzXI/YLis70Tzib8ge5Lkqlt1vz7H+4/BA10/MltijetOcr+KRzSEnsdsP4j+/McssXI/EDpV8sBhkL9YOv849oKBvwgby/lnHyg/ns9mpv+Edb9K4OhX86RxPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALZ0ya2rq7P/adbLNsEfA/piLE5FykdT/sGb1SQH1xP7szcssM23q/eJ9lLboxUb9QBx/EnXlcv/hO6RCKQnY/AIZRsi5BRT9BPdqtRyiBvyzv/F4HboG/lAKGNxD2eL9IghqNhE92v0DwBE1xg1y/dSOOPS2Ngb9MJ0o0OvFpP/xifRnVC28/+yMCQUfFf78D368RWDWBP5g9N4qHe1o/NDmkM7NoYT+ohAsOsDxfv3Qognt8Cn+/zSeUbpJ9db+0Cw1hd1t0P5wvfb+NfIK/UdASRdP/gz9X3DaiExeEv/NBnBoZs3i/MJqV0gfIST/N4b2FPyqDv6QD4dHmHnS/4w1h1sRfhD8qxueLzJtmv5QZ1rBuSWI/bFRAKPE5YL8EA3H3bF2Cv0DiHOOqkFW/IHTtNBTSUL98/m7h2Z6Cv/pG2SabHnM/qoUQCZ+jdD8wvl4QY8FFv1rssJcN9HS/CJPmpVcFXT8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALwpUkuEPKU/fLAr/6ph/j9//FE8ArL+P2cgMaQx8Zo/bebnownbhT/1xdWB5h43v39czORg6A/Aztp1nqAErT+wnSfD25+WPwscZ+ie0CFA3toRjo46hD/Pc2Hvooa7P9PYfh1RGL0/LssWn2r2WD90I66ED0cuP/z4SUFlsBG/pDUkoe4B37823sisuMl+PyT6k2cdvVE//QtahHcYAkCsffhAj8uqP8RxEHdZrqw/JlHIEw2CtT8qDj861ac8P1BH/XaznuO+S4z/qO4mPb9k2/eES03dv71WaG/3p4g/MDjw9U4yB7+65PaX+3YaQAoC+XTiP6s/e8oZ1l1Fwj91oBpNTAfIP+Ln32qCC6w/423+nHlHSL9wmebFmOkMPyBhkqiJKeI/hVYZyu2W3b+aMHwLTBVEP3zX1/7KARNAzaRqmXkJoD+HuYZnfEvnP+KdspmMMeg/iHvAq5v5wT+leXgu9RxxvySLH+aJ7Uo/dsNid+ol9j/X6bNApc7Rv32FAh1Pn4A/XiGebqoLBkAD1V7/4jqYPzsg1QxhBOw/sPSK8EOl7D8+WcPLk8HAPyv74LgVdnK/rkUEmP0uRj/zejJsN9vzPw4wUSwh3Me/4OIta7FJej+7ssy+Okb8P30wBaKs96k/yaupHR2owj9wN3EC9xTIP69u3l90m6q/HMsenRgAZL8cZaKWXclWv64cwyMDkuI/stL2eiKz3D+0aId9n7yOP3zX1/7KARNAyw/MQSuXlz/3IkuxGovnP7SjD6A7K+g/MZQxzHEGvr/NoqtdFH2FvzFRc4+mplu/bFTCkPRE9j/q8lfGYtHNP9bWAbp4gJQ/XiGebqoLBkA0W8D+JWqQP8fNJSUDPuw/17WirfKd7D84qhangCe6v0ZgfDWWIom/8p/bhgRjV7/V3MPzQu/zP6EShY5LjMI/rslyfELTkT+7ssy+Okb8P82M9Cgllrw/krlFS9RZyz8gtd4+ZvrTP+NLVuX7icG/kzEb79fkf7/kGmgSPniMv2n6DXbmh+K/vDAOJMQF2r9q0/9FAY+iv352ZiHJk/o/WozzePJCtD9enxP4AFyhP9jFMCkvZ7o/5Lhv9cg1p7/me99AhJh8v4Tv/JX3hIG/odoCqZ8Jxr9n6x7/zL3Svyd1ReljepK/fTtVVjKs8z9UCjuA9q2+P+K0ZnaEP8o/1BfqCc8J1D9M+n2qh+vBPw6/zWD+oXC//N+r/eulhz/ZYJZH5iXiv9r6MdS/KNs//Dul5PjHmr9+dmYhyZP6P9p3M6PpFbU/AtBulzQ5nz9BNFoXzo+6P+MXrNDccqY/jpfaJCT1dr9mCLE+9AZ8P1JCnzmps8S/rIKOmIAr0z9D/Tiu/AiFv307VVYyrPM/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoqzZ1Udkgr8ivy9XFXOEP1p2LsR0uIO/I1hbtoFff79MG5syeieDv9BIJRW90Uk/EOtFn3Zsgr8SeVkHzDCGPz+4jOa9BpC/2qXDkIuqf7+6ZigvrMuFv3A9v9HV20M/A4JsqRvLkr9temAuSXaGP5pb1S2TCZC/m4IBYXG4f78rSEWvi7aHv/h3zPDxoEM/EhJPAZ7ml7/ir0e1Lp6AP3LCD2AMnne/iY6GmUzdgb9SVYWI06uGv2pChS6UizA/2gWWZ8vzl79k/7MjkBh4P+lZoWLLxHe/mAkwEyrBgb/FhpOrl6WGv6+sAkTIpUG/2gWWZ8vzl79k/7MjkBh4P+lZoWLLxHe/mAkwEyrBgb/FhpOrl6WGv6+sAkTIpUG/CEAOf57LkL/zez+0dFGDP8U5nD+miHu/GsgQtU3+e795JezA7dSGv7CjQ0mRFT8/fhs5fkjIkL+ae6FDjWuFP/PzblitcXu/TxAhwpMXfL+o457i1diGvyanKNKTcEs/fhs5fkjIkL+ae6FDjWuFP/PzblitcXu/TxAhwpMXfL+o457i1diGvyanKNKTcEs/2zqqBVbikL+pESPYaxppP6mfI+iTmoS/5QoJbhVefb8cp3RT73WEv+S2mLdkfGQ/6fkrF97jkL8Y+QKoaOtBv1l0DW9S0Hq/p5dbDu0Wgr+j5Wy4c6WCv9KwtGDb62s/b7XiCB+mg7+6IzCxbml7P3aw84NGwYu//tJEFPCpgL+0nGZvI5+GvyJCk3c3tWI/IRuXYGSzg7+xWdmG51d2P31+wZieWY6/998OdxXhgb/ZB6Tq4j2Hvzb22bQtOmU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8SKVVHtrg/tv5mPKPH7z8Kykki/WttvwBEvL7cQn6/CmgHbTJSar8YV0nC96hcv8BxYKrKzTk/FE0FWfxTbD8AgwfW/AwNv0gsN6lC6YO/aNFz+dxlZT+JTMpB6fuAv3PBwoLhwYI/QFpGSTsTe78Q8Lwddq5qP7Cd8HcPUk8/xgUtRDLvez+GiDDbPdFyP8iafocxlHC/5hL1axRifj/uxqz5yfJ0P/RSztLh6mY/c6qjZYVIdb/mLNGO9Ix/P45AC/pO834/QFsAd6otO78YKnG1VvhWP3Mmh+WTjXa/omptEhUQfz+rGn6nureAPygzpiA8H1m//PNphst9dj+KjePzTTtkv0DkzeUqjCu/xsn3WfvUdD+2UIlAL6uAv2z1F8b37GI/FtyxmVgvdz+V+4kqrf+AP+CSCK6CJVg/vGp+X57cbj/zpYIolteCvygVPM73Sms/UEf8DHVjdD8IR5yWKER9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4vD/VqY1pT/04Q03CmT+P241/X9Vsv4/diYP7EdJiz9QY3F4OraXv9JmKmAi8zM/ZoaIhjPpD8C5Oo99uGqdPzN8aTpj7Ki/Cxxn6J7QIUBhzh3y0zWEP6YQWhTukrs/wXG51PYivT+Oe+4j7slJP4wTDNmejE+/OBN7+ub2Cj/kUUeP0wjfv8EvXnuPAHA/n4XSnBRncr/9C1qEdxgCQA6HGz8yyqo/6BTRys/FrD/IS0q9pY21P7nVeX/6oCc/EzSW8kagMj/I84yXXicaP9dVdSJjY92/EXLDcLsteD/B17eDI7lwP7rk9pf7dhpAccxuLM9Rqz9gcHyY/VXCP4plCKHsE8g/H2/ZV9D2qz9EbwNYtqFwvxdF7ZALF2I/XlEyz1k34j+J7NB+DZfdv6ttNVipZpc/fNfX/soBE0A/qoqInl2fP/osq2mCVOc/9GHkfJcv6D/L3GeJdaTBP7CsTnMVNpC/njAD97oTaT/khahQEyn2P467KNjoe9G/ZWIKpW2Onz9eIZ5uqgsGQBJ1K5nefZc/Y/smzKgM7D/6Kermu6LsPz4D3lJ+UsA/QgIhNuQtkb8r5b7/khdkP71eU2tK3fM/AtXacYY7x7+clyEOz3OYP7uyzL46Rvw//Q6lOzN4qj/AD8hED47CP44hiEDNF8g/Ps6Za90hq780rk1bia9tv+B11ucJPV2/4PIK5nV04j/tbf9XIwjdP7Ukf1lAk5M/fNfX/soBE0DsV8XDVXOaP6pevulue+c/006x+6gu6D8ssVCFkva/v9okpQeDFJG/bQkofNF6Z79TWcD2Qzz2P/Qtxqmis88/F8XVtEhVoD9eIZ5uqgsGQMKH6hmPB5M/8yRNAkMw7D8s0Gqo4KDsP4zruSx4iby/zm/YUFbik7/e1a+vKztkvxOYP5Ch6fM/q/UfhZdCxD/xeRBn3zucP7uyzL46Rvw/Tw20Xk/fvD9cWJO/U9jKPyqbON0L2dM/UWqpJi13wb8sJcKqUX+Av2JI/uuOu4y//9PZBYhY4r98Hr13kTjav2pS9Pn1KKO/fnZmIcmT+j+Br18+oC20P/A6ntnaUqA/O3Lbd9/XuT/Z97kA/2Kmv5AJRP8GpXi/OBe9WpLxfb8G/s+JT0HFv/yIO5N+rtK/OHo9agE1ib99O1VWMqzzP/mxgLAPX74/RtvWh++Pyj9Pwb2WVgzUP4rl89Zq2cE/QmJWNx2Gg7/h67mgs6SPP1LOd4hCO+K/6yeTcvTw2j8DbTkMfIKlv352ZiHJk/o/fieZROQotT+7YkRR5CmgP/ZQ5iIzrro/rJh+YfC7pj9kWZQ27jB6v9f4geYUtIA/FIO7XTkVxb83mFAFMCzTPzRfEXLfWY+/fTtVVjKs8z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABe/SWcJjc1v3zIATgWW1Y/825LHdSddr8RjUjCAFN1vwvTwR7r9XU/EkAyJz2VfD+WvsdH7Sg6v1onC3Ton4M/NbcTgtZmYD+ckbiAg2B3v4r0GFmwlXw/zNhi0sJTdT9YfLLVn6dfvxbrIXVtpoM/hClK5W0eYD9qJboj32F3v+6TQe1o8Xs/YeF7UeJUdT/OOW0WDJFtP4cD2ubQG4M/SnFAYE+1OL/RoHVgbG12vw2XIHJEfns/7Z/kLZajdz+6daHL9tFsP+3IzBGKY3E/XYyLqRSIN79Pq4QRS9J1vzB3bQrSdHs//j45Zk5DcD+6daHL9tFsP+3IzBGKY3E/XYyLqRSIN79Pq4QRS9J1vzB3bQrSdHs//j45Zk5DcD+ZWH9D8qp5P+rG6RVzC48/jZT7JNBtLr925oyFSE54v6ES+4dUh3s/A1Bzx3rXcD+NqYbzWJt5P+CP3qhLGHw/ysId5pJJIL9whWohmEt3vynjUunXXns/Soe3M/dCUz+NqYbzWJt5P+CP3qhLGHw/ysId5pJJIL9whWohmEt3vynjUunXXns/Soe3M/dCUz8Utj3MK0dLP0AV6x8a00a/5z78vhdWYr8FweRF7BZ3v/Xdohyt9Xs/XLzC7zZ8gD/0zYtoZ6NOP4gZFBeOv3c/RwxUSrPtgb8NsoNysDxlv6M24jfqZ3U/ZFU3s2qiej+6sOmOEvliP36DKUvy12w/iFMzW12KQ785s00bRExyv0n68lvBGH8/kWaV1v31dj/6iKevR19iP7jJCQEhkoE/D8n5fF05cj+GQvA7s9pgv27Z23g8EII/YfEVfa8Pcj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksETXgBhpSMAUOUdJRSlC4="
43
  },
44
  "_episode_num": 0,
45
  "use_sde": false,
46
  "sde_sample_freq": -1,
47
- "_current_progress_remaining": -0.007616000000000067,
48
  "_stats_window_size": 100,
49
  "ep_info_buffer": {
50
  ":type:": "<class 'collections.deque'>",
51
- ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQQKwuPtP55+MAWyUTegDjAF0lEdAn5ijWbwz+HV9lChoBkdBAYlB6Z8a42gHTegDaAhHQJ+Ym+36Q/51fZQoaAZHQPQbZOcurZJoB03oA2gIR0CfmJXxvvSddX2UKGgGR0D5mwN9TxXoaAdN6ANoCEdAn5iOgUUO/nV9lChoBkdBAl2Pokona2gHTegDaAhHQJ/JSOjqOcV1fZQoaAZHQO2gUcdeY2NoB03oA2gIR0CfyUGNaQmvdX2UKGgGR0ECzV3i0F8paAdN6ANoCEdAn8k761stTXV9lChoBkdBArvKDVMEimgHTegDaAhHQJ/JND1Gsmx1fZQoaAZHQQK/RZGrjo9oB03oA2gIR0Cf3B7IDHOsdX2UKGgGR0D75AnBJqZdaAdN6ANoCEdAn9wXlbNbDHV9lChoBkdBAhRafy/bkGgHTegDaAhHQJ/cEeIVM251fZQoaAZHQQK43hpaibloB03oA2gIR0Cf3Ao60Y0mdX2UKGgGR0D7rKqDlo12aAdN6ANoCEdAoAaeruIAO3V9lChoBkdBAprdxI4EOmgHTegDaAhHQKAGmv7m+0x1fZQoaAZHQQKuSoUcn3NoB03oA2gIR0CgBpg7PppwdX2UKGgGR0D3BDc9QXQ/aAdN6ANoCEdAoAaUhs67unV9lChoBkdBAtU1r5h0AGgHTegDaAhHQKARjTm4iHJ1fZQoaAZHQPVue7PjXFtoB03oA2gIR0CgEYnIIWxhdX2UKGgGR0ECyVORVIZqaAdN6ANoCEdAoBGIfW+XaHV9lChoBkdBAti5e+IuXmgHTegDaAhHQKARhRQ79yd1fZQoaAZHQQLEYY20iQloB03oA2gIR0CgKt8FINExdX2UKGgGR0D4LrMLJ0W/aAdN6ANoCEdAoCrbvJA+p3V9lChoBkdA+lAwtyPuHGgHTegDaAhHQKAq2Ucn3L51fZQoaAZHQP285hKQJX1oB03oA2gIR0CgKtWxY7q6dX2UKGgGR0EBfGK1jqfOaAdN6ANoCEdAoDZmB8QZoHV9lChoBkdBAs4Iabvw3GgHTegDaAhHQKA2YkZ75VR1fZQoaAZHQQLaDlKcNH9oB03oA2gIR0CgNl9aEBbOdX2UKGgGR0D0NDm5lOGkaAdN6ANoCEdAoDZbgjyFwnV9lChoBkdBArkfnWUbDWgHTegDaAhHQKBPExA0Kqp1fZQoaAZHQQLGgtD63y9oB03oA2gIR0CgTw94VymzdX2UKGgGR0EBCdLucDr7aAdN6ANoCEdAoE8MdLg4wXV9lChoBkdBAszD0SsbN2gHTegDaAhHQKBPCK0lZ5l1fZQoaAZHQQLWItxiG35oB03oA2gIR0CgWG8O09hadX2UKGgGR0ECxEhAWJrMaAdN6ANoCEdAoFhraM72c3V9lChoBkdA/oLwVNHpbGgHTegDaAhHQKBYaHIIWxh1fZQoaAZHQP84SNGAkLRoB03oA2gIR0CgWGSPU8V6dX2UKGgGR0ECzzp79If9aAdN6ANoCEdAoHBzqv/za3V9lChoBkdBAtKZqt9x62gHTegDaAhHQKBwcAhB7eF1fZQoaAZHQQIS3IJdB0JoB03oA2gIR0CgcG0lZ5iWdX2UKGgGR0ECzSzqKP4maAdN6ANoCEdAoHBpUaQ3gnV9lChoBkdA/wUg1o11n2gHTegDaAhHQKB6Vf4yoGZ1fZQoaAZHQQKkxyaGYa5oB03oA2gIR0CgelKVQhwEdX2UKGgGR0D21oI/oaDPaAdN6ANoCEdAoHpP/vOQhnV9lChoBkdBAsR5J//ecmgHTegDaAhHQKB6TH1e0HB1fZQoaAZHQQLKhLhVENRoB03oA2gIR0CgkxSs0YTCdX2UKGgGR0ECyLm1cUudaAdN6ANoCEdAoJMQ9ovi+HV9lChoBkdBAuFsPjU/fWgHTegDaAhHQKCTDgKF7D51fZQoaAZHQPy6D7DZUUBoB03oA2gIR0CgkwokiUxEdX2UKGgGR0EC2GttxlxwaAdN6ANoCEdAoJ7+CqZMMHV9lChoBkdBAHqEKVB2OmgHTegDaAhHQKCe+m5UcXF1fZQoaAZHQQLRWZ1RLsdoB03oA2gIR0Cgnve+dsi0dX2UKGgGR0EC0i7BkI5YaAdN6ANoCEdAoJ7z5Ec81XV9lChoBkdBAtNtqYRdyGgHTegDaAhHQKC3Tn1WbPR1fZQoaAZHQQLUhjuSfUZoB03oA2gIR0Cgt0rNnoPkdX2UKGgGR0EC4UWsdcSoaAdN6ANoCEdAoLdH3lCCz3V9lChoBkdBAt0UzesPrmgHTegDaAhHQKC3RBIFvAJ1fZQoaAZHQQLUIM2ZRbdoB03oA2gIR0CgwKTbN8mbdX2UKGgGR0EC3q8GCqZMaAdN6ANoCEdAoMChJXhfjXV9lChoBkdBAsyV6EeyRmgHTegDaAhHQKDAnjT8YQ91fZQoaAZHQPw06FNUOutoB03oA2gIR0CgwJq0lZ5idX2UKGgGR0ECsNVJcgQpaAdN6ANoCEdAoNj26mO2iXV9lChoBkdBAqzA3rSmZWgHTegDaAhHQKDY8yyD7Il1fZQoaAZHQPO+BCSFGodoB03oA2gIR0Cg2PBf0EowdX2UKGgGR0ECyBkZyEL6aAdN6ANoCEdAoNjshkiD/XV9lChoBkdBAqi9aPsAvWgHTegDaAhHQKDiBPNVzZJ1fZQoaAZHQQLRomeFL39oB03oA2gIR0Cg4gE56t1ZdX2UKGgGR0EC2+dou5BkaAdN6ANoCEdAoOH+PJaJRHV9lChoBkdBAtaBMchkiGgHTegDaAhHQKDh+mlZX+51fZQoaAZHQQAcXq07bL5oB03oA2gIR0Cg+ypV81GcdX2UKGgGR0D3lYg3YL9daAdN6ANoCEdAoPsmmgrYoXV9lChoBkdBAun/wzxgA2gHTegDaAhHQKD7I7cwg1Z1fZQoaAZHQQLWVHCbc45oB03oA2gIR0Cg+x/i5uqFdX2UKGgGR0EC1HU1cD8taAdN6ANoCEdAoQbDyYoiLXV9lChoBkdBASqsR4MWoGgHTegDaAhHQKEGwEg4ffZ1fZQoaAZHQQLUWCPFvQ5oB03oA2gIR0ChBr1uR9w4dX2UKGgGR0ECanJYP5HmaAdN6ANoCEdAoQa5k3CKrXV9lChoBkdBAuXiw0GeMGgHTegDaAhHQKEeVoPCl8B1fZQoaAZHQQCcKdZlnRNoB03oA2gIR0ChHlMZHd43dX2UKGgGR0EC5TLhBRhuaAdN6ANoCEdAoR5Qb83uNXV9lChoBkdBAtOmkUAT7GgHTegDaAhHQKEeTNlAeJZ1fZQoaAZHQQLlLymVqvhoB03oA2gIR0ChKCc2Jiy6dX2UKGgGR0EC2q28er+6aAdN6ANoCEdAoSgjlijL0XV9lChoBkdBAuYdZfv4NGgHTegDaAhHQKEoIJTl1bJ1fZQoaAZHQQLjrjB7/n5oB03oA2gIR0ChKByq2jO+dX2UKGgGR0EC8QsjoyKvaAdN6ANoCEdAoUAvCCSRsHV9lChoBkdBAuhzB71Iy2gHTegDaAhHQKFAK0pEx7B1fZQoaAZHQQLdbn53TuxoB03oA2gIR0ChQChX8wYcdX2UKGgGR0EC2+bbsOXmaAdN6ANoCEdAoUAkhTwUg3V9lChoBkdBAvUcZxm03WgHTegDaAhHQKFJF72tdRl1fZQoaAZHQQL0NIaaTfRoB03oA2gIR0ChSRQXqJMydX2UKGgGR0EC/bu0O3DvaAdN6ANoCEdAoUkRNEgGKXV9lChoBkdBAujipaxHG2gHTegDaAhHQKFJDWluWKN1fZQoaAZHQQLsZbHc1wZoB03oA2gIR0ChYbUHIIWydX2UKGgGR0EC9VTsajveaAdN6ANoCEdAoWGxdB0IT3V9lChoBkdBAumy5rnDBWgHTegDaAhHQKFhrnlGPPt1fZQoaAZHQQLyTKKDTSdoB03oA2gIR0ChYaqWkadddX2UKGgGR0EC7oJXBYV7aAdN6ANoCEdAoWvf7Hhjv3V9lChoBkdBAwBe/4ubqmgHTegDaAhHQKFr3HuJDVp1fZQoaAZHQQLq2tqD9O1oB03oA2gIR0Cha9m/etSydX2UKGgGR0EC+X6J3xFzaAdN6ANoCEdAoWvWMuOCG3VlLg=="
52
  },
53
  "ep_success_buffer": {
54
  ":type:": "<class 'collections.deque'>",
55
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
56
  },
57
- "_n_updates": 1230,
58
  "n_steps": 2048,
59
  "gamma": 0.99,
60
  "gae_lambda": 0.95,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ee54eda2290>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ee54eda2320>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ee54eda23b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ee54eda2440>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ee54eda24d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ee54eda2560>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ee54eda25f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ee54eda2680>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ee54eda2710>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ee54eda27a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ee54eda2830>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ee54eda28c0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ee54ed46f80>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 16384,
25
+ "_total_timesteps": 10000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1723796299251953997,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWV9hcAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAFwAAAAAAAHCImL/jQUg/CCVnvUEwJz8h8Vo+NHaEP1z777/EFHM9b0ulv0Bfxz+tac4+nWzqvti/v78O0nu/nkWyP68FHj+lpKa/Zcbhv8Q7S74KHNg+XI3wPnR2yz9hE4+/T/EWv5s6w79jJ+K/7MMdPea3wT8kzfq/ioglv9feGD9yKQZA+ylnPnG0jT+SONs/LBQ5v6wQQL+6u+K9QaUPvI7tDj8JUo+/MKJ6v0W1UT6PeibAgYZ5vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqdVK+PTpMPizKSb776Z6/6Kycv2yim7+G3AG/+9NJv2OBnb94KaE4+sp1P6hJL79BSii/V+Sfvq0jsr1EAQbA5N24PpScjb/Jlqy/wQ+FOPN7jr5OVck97vOkP/wYG0AfsaI97CrhvaYRuT+7r5i/fWljPkgYnzjLn+K+e45vP5WbtL0/aQG/64LGvzuHNb+jK3c/SBzlPgFifT8fA5s4UMAmvzsJ1D1B3xm/+8Q5vwrbKL+klim/RjYEPz3vLT/WHgY/ACCNOIByOr+nYPI9XIzXvhOK4b458GU/sZCxPklwDj+pNdc+XJYqvxY2cTg6cos/F34xv46CpD5AwJ6/9dMdv5TB2b/rH40+eY6EP/ojRz8fA5s4VN36P6qeE7/gNJc/2fi+vxl2Fr/vrMe/XG9/PhX4uT/kcAs/ACCNOKJ8+z+hdAq/PKSLP/Aks7+hVpG9YRGxu5ejMz7ATdA/Iq4BPhY2cTiSAQlAhY45vpkHEEBnJQHAKo5Xv3Kn178SpxW/t8iwv2ro9L7qPmo4MsaNQB8mgr6S9FFADH4FwDuhir+FvSrA/ZlUv2QTF8CaCDi/Z7xFOKIpj7/O3zc/ZlQAv3e+az5Sc4C/rAO1PjiFTr+T2lC+Z1whv+o+ajiY1l2/Fr2RvRgbQr9fs50+ANXhvmxpH74AlRi/ihOvvnbhur1nvEU4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXGbdvwmsK7+S78s/e9T/v12gwT+diKa/yRYjv3+3m79MLbS/K6qhu/QDLD8QPXi/JjlGvmb9Wb/iII2/muHqvuR9dj+k5ji/r8JCvjHXzz8aBRG/E7B5v/hZLT6WAaM/tCXXP3Clob5oLYA/X+fUP2iosT70ZKi/tCXXP3Clob5oLYA/X+fUP2iosT70ZKi/K/X4Pm1Gbb/3pmK9HIbXu5d/PD/S8yy/cPHIPmYzRL8tSoq8bHr/O4SIYT5jY1K+cPHIPmYzRL8tSoq8bHr/O4SIYT5jY1K+MXgZv8re+j3vuV8+YvMdvttN/D74SOm+OTVZvL3AoD4ovZC/7yfuP+XyhL8nXZ8+NJGQvu8dz79w/wbAHy+Gv7jRA8DZt8c7T/G+vgEmr78Stpy/sdHsvlowe78Zfn+9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU6SPvxunjr8GUJA/qe4IP/+3jz/OrJA/i7qQP6mLkL9fipC/dTxqv52vjz9ZTY+/zk+RvwvEj78LaZG/CKeRv/80SD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhFbA9U7OLvlaKWzzWLpe9vKAGvS+Cyb7kGKc8aZ7vvYqs0LyD3t48erYBPRc+Tb7HHns74lKiu+1W/DyIw/k9DQ1YO/PIyb6bE668/1NuPLqs0z2duAS9m41sPQbUAb5854W8hJtouuRZvz0Fmg29HfhYPfTkq7wE0GM9cjZ8PvTTkbwL8rS9mp7TPEsTvL6uyYs952M5PMez9L0tdh895OpUvTOvCL792VQ92mLavDMF1L0H2AG7QQNwvaEFeL0GqSK+RAlGPtzijDuXOD+9aZk2vZG9s773bRE9Mwu+vfGGAz4cI0M8kXRXvfhRlb5iUWo+DG4qvaUdJj6/iJw90ZNKvecji74HsLS9KNdSvnWGCL4xk1S8OIWzPXZSkb6tqyS+QtUMvp2WGr6reEM9fR5LPc8Wj760nMO+fv0pP5Fkgj5YtZk+X1nkPoAswb5d4xC/leC6v/iPGz5+xFs+c6+sP3e6bL/meb0+JQFiPunAzr3n2Ge/Qhcqv/YuIb0QGQi/bUa4PUxMlz9H/cc94k+BvJ8gNL/mogM9r6E4v+mfBD94YQZAqVmIvwCVKb/dSwFAobfav/G8yrlsYx2+WD+5vmY74T/yl0I/dyOCP5i50j72G7I9Olk9v1+UoL/I95k+W7Xav1tVGb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgU5mvziXCD/NdSi/ni5Lv30qiL82x/C+/q0tv0DPwL4k5iW/eCmhOHvQlr8ZHx2+AZ9UvxnCsz4Z6ra+f29APjdMCL9vXlU+XjIQvsEPhThF3Vm+/Vlzv2y8Xr4zJBI+uVMev44YHj9cwjw/D/X9Pu35Qz9IGJ849e20v9y+DkBl5sA/eh+nvWyRY7+VQP89p/m0Pxm1KD7H/q8+HwObOCsGk78BKZg+mioDvx23mL1Tz7g9jEw7vYp0MT+dPcA9COoBvwAgjTjKIjq/y/4avylAf7/Spts9RAbgPuw6PL46qhW+da9NvjIFNb8WNnE48MBsP0NbDj+JrTM/Do3Qv9900b9d7ua/6X4tP+hjez8wWYg/HwObOBKSq758jjy+p3xEv73LNr9DY5C/uGaBv5pL0T43dOA+Bt5nPwAgjTjQZzK/Eu4Fv9j4bL+PRHq+Y+voPhXbQD6dHik+dbrfPWkMHL8WNnE4G5raPnLsi7/UrA2/gqivvgVKILyV3Hu/WawWPbX8Or8hN7i+6j5qOFeo2j4XxsO+/SDLPVnAZj8Re8M+fF4Sv6OLNT+k/Dm/ARAyvme8RTjsRpK/QXwfQJGvwT+t8Rg/ah2Iv8HhnD5U07a/IdravR61p77qPmo43d/VPbLJ0T/4CKE/KswCQFlxIMATI6Q/TSu5vyo2Az8t9LC/Z7xFOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKKJZ78ZVY6+ZTH1P7rFPb85YNM/HXsevb93j71grWy/DNuwvlu9Mb+M2VU/EdoaP0ZOyj8+bQ++tgGYPkj0lr+B9SRAyj3fPKbgTb41vZe/7kqivj5iF76ZJLc/rqd1v1MMrr43bPq+5i0SvzYaa75ckmw/k8g0PlMMrr43bPq+5i0SvzYaa75ckmw/k8g0Pgb3AL+AI0Y/S3QIwEFDI8CuAhtAFWCxPxHYg748piy87RCfv4wVDr7fnkM/4tl1vRHYg748piy87RCfv4wVDr7fnkM/4tl1vRv0Qr8/sag+dNtqP3j23j2KomE/gXqWvghWCL9EUqU/ZYZRv5uD7T/BpSQ/fgZ2uyvmCT/veU2/TCGrvt9dLL8RI2q/qdsIP95ywj5Q+Cu/2cl8vfBgpr6MLIe+pD7RPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFOkj78bp46/aYqWPiWgkL/v64+/3acpvxLBj796MpA/sk97P/6Jjz/bKb+84JWQP85Pkb8LxI+/iDFrvp93hL8TFZC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYRWwPVOzi75Wils81i6XvbygBr0vgsm+5BinPGme772KrNC8g97ePHq2AT0XPk2+xx57O+JSorvtVvw8iMP5PQ0NWDvzyMm+mxOuvP9Tbjy6rNM9nbgEvZuNbD0G1AG+fOeFvISbaLrkWb89BZoNvR34WD305Ku8BNBjPXI2fD7005G8C/K0vZqe0zxLE7y+rsmLPedjOTzHs/S9LXYfPeTqVL0zrwi+/dlUPdpi2rwzBdS9B9gBu0EDcL2hBXi9BqkivkQJRj7c4ow7lzg/vWmZNr2RvbO+920RPTMLvr3xhgM+HCNDPJF0V734UZW+YlFqPgxuKr2lHSY+v4icPdGTSr3nI4u+B7C0vSjXUr51hgi+MZNUvDiFsz12UpG+cl3GP4q1rEDNrxJAtIMWQE8FLcD4lkhA1xyDP/kGPD8wDRG/gQPkvqh/7r7xkB2/JWB3P8mpcT/a34g/qDODv5FqAT86Ami/8IOov+mGiT8ZwXA8sNIxvhKlKD86S7m+ev+hPdSpcT8v/iQ/Dlh5P+r0gb9VkhO/Gl2KPyJlvL7agI2//fKzPX5o375deY8/Q2bxPljFTD5lG7g/F2ojv8U/VT73n7a8Wb8XvxV9hb5xQhk+/bthPx+tsb5018o+nb/vvuIE1b6KAZK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPcla7/oHAE/PpBKv8TIUT/eQYy/33FJP64sKL8NViE/x4bovngpoTgUNSW/C3gcvRH2+72obYQ/+KSgP3xUcb5frR6/hV9WP4nqsj/BD4U4Ggo4P3Scu74Tq5M9ldGjv0K6hb+lk/2/TboFP7dKgD+0LNk/SBifODatDz/vnfy+MB5TP/Yt2j88KkI9i/dGPxnpuj7YYZC/3rOHvR8Dmzi+Nqm+makuv9R2Mr8ZIEQ/vpXBPn2dij5TkP89S1BEv2PkK78AII04FOYvv0VMLr+1/oy/flA4PSP24T6F3Ii+E4K0vkbCNb70UI6/FjZxOEsCBb+wcoA/45/QvJ+YLD90kta/i90aPxAggT9HQSS/ZOqXPx8DmzhQxFi/Z/b1PpnMWb4yFUc/ZpAqvqYiFD95+U8//kVZv3v6Wr4AII04FN5Bv/r6+z61QFW+v+CtPopjxz9rBbC+cmtMP4DrBb//vpC/FjZxOLQWXr9aYeY+DrUHv+V1Bb942zq/mMLcvkklWL/+ykY+CO2Uvuo+ajhWkHm+choWv/bPK7+YGs++MIZEv954KL+Xbdm+XgtOvrXFbb9nvEU4GSOrP9K69b7FSYo/CIyuP4+Arr6oy8E/PC5KvhQYkD8RvhS/6j5qODPPbj8h0zi/OpJ4Puf1BT/MOGA+a4UDv8JwwT3lqoQ/U5B6P2e8RTgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkETG/7gVcvyDXnT35DTC/4ZgIvlXvvz/eSxU/5uVmP13UBL8AMQzA90WkvTAnhj4qgGk/9hUbP4yB777/PgPAlkTdPribTz5Fgku+9qo6v0+Czj65ZtW/ngUNPpb7SL5OWsm+0HdVvwCBFz6lfsu+GefwPU1NyL5OWsm+0HdVvwCBFz6lfsu+GefwPU1NyL5Pt7k+VMuNOw1m2761JpS/vYQ6vIeiJj6nKkU+JJkYvouT5r74Ok6+HMyNPbie8b2nKkU+JJkYvouT5r74Ok6+HMyNPbie8b262Ok+XO3qvUq8GT/5kCy/saYWPzluPz8ve20+r2P6vnQuVT9A8ki/dgpEP6mTZz/svCu/2YAtv8ljcr8Yaau/rBxgv9/Mpz+0WdG//bXgPdG00T4yxGM/w0iQPp4dGkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARG5A/CbqQPwZQkD+VAbA+/7ePPzOmtj2LupA/apUKP+RIQ7/pObS9oDSRv+CVkD+32PI+j/CQPwtpkb8Ip5G/ExWQvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGEVsD1Ts4u+VopbPNYul728oAa9L4LJvuQYpzxpnu+9iqzQvIPe3jx6tgE9Fz5NvsceezviUqK77Vb8PIjD+T0NDVg788jJvpsTrrz/U248uqzTPZ24BL2bjWw9BtQBvnznhbyEm2i65Fm/PQWaDb0d+Fg99OSrvJ/rJL80xLu+jjitvqDxGL8eP4S+aLfAP67Jiz3nYzk8x7P0vS12Hz3k6lS9M68Ivv3ZVD3aYtq8MwXUvQfYAbtBA3C9oQV4vQapIr5ECUY+3OKMO5c4P71pmTa9kb2zvvdtET0zC7698YYDPhwjQzyRdFe9+FGVvmJRaj4Mbiq9pR0mPr+InD3Rk0q95yOLvgewtL0o11K+dYYIvjGTVLw4hbM9dlKRvq2rJL5C1Qy+nZYavqt4Qz19Hks9zxaPvq4TqL+4mh4/FliVvoGTED8INAU/r0N7P0+ln79lb4G/vqPVvy7/sT9UFAM+puv6vbCKP7/2Lpq/89YRPxyTtj82i76/gE31v7+VJz4FtOc9BJ9wvzDDbb+hzm6+gOAIP+HhET9Ajze/apdlvk82hT+w7g6/HzuEPAsdjr1bUS8/RC+Gvkx6uz5IzTs9CSDMvkiv2b3Rqy2/ZX7kv98PXD4f15a9YC3Wvx32HL748H2+QFuTPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4ayA/XOUKvoRRUj9uTMa/1fRQvw9/tr/uesG+tCOPvy31Y794KaE4PoyyP1mA/r4VgF09+6JJv/Lj877QxxPAbAzyPZwzqb9L0py/wQ+FOPtjub0NXXc8Xi1xP+xfD0DQBiG+XyZMPti9lz+RHq2/o5WdvkgYnzjbgNa+QQ2Dvp2+Eb+aWi+/qD0GvyC/Kb82Rxk/wOFAP7GkBz8fA5s4Ofm6vh/sQL7keam+LKKAv5m2Hz6Ke+i+C/bMPle0fT+oue+9ACCNOC4sCb+R4L4+vCaKvRqsW7+I6mk/WJAIP+JJPD9suTM/gVETvxY2cTjsmmg/e2jIv2AAV73Amw2/NjYtPqUTGb8UbgS++L+HP4oB7L4fA5s4edkwQMcXYr8HyLk/EFJ/vw0bCL8ZPz3A0lKyvc+l0z+KCIo/ACCNOLsOOEBykxe/iZy1P3bPib9rsJK/aZ5/wJp0l71Vsu0/NOYNQBY2cTgLIDxAX/xev2z6IkD/u7m/ojc3vubTfb92lXW+ZLXRv/kiTzzqPmo4oM2MQHmVTr+nnz5A8DUivxBNkr5dShw+mWeDvsquGMDSCVE/Z7xFOAg2mL8dWYQ9+nGjvylitr5UuAS/rOfnPP/kA7+5wQm//CgFv+o+ajgigOS+MdEtvxnsar+S/Nc97nlXvfKVoT5VBec9s6wwPge7HL9nvEU4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeHTtvvdiFr8tVYY/qaykv039mz+PgoU+zbKmvlYAyr557969+DY+v1KomD9zEqg+I3ekvoBD076gHQ++g3k9v3aXoj9yLJ8+zGmmvbgKsD46JCu/sInavpqYsj+kXlc/situvVQabD5h3+6+iWrfvejXAD8rUV8+situvVQabD5h3+6+iWrfvejXAD8rUV8+kHyQP+Od8r7esSI/eE/nvv9uAj8pVRu9kGbrv9WzED9ZGsm+Z++yv9h1Nb84ghVAkGbrv9WzED9ZGsm+Z++yv9h1Nb84ghVAqXGQvrvghr5cVX8/HYOCvwbCiD/krbo+GiFbP3dIjD0zQrO/Ge88QH6SUr9ajxZAQFP9vuFwM7/yEw8/mJlUv96GGj+uZtE+9hbTvmCHLr90u58+4csOvxRUpT5v2rs+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU6SPv1KcTT0GUJA/KOxBv3FtHj/OrJA/i7qQP6mLkL9bmi4/JY2Rv6A0kb9ZTY+/0Ex1PwvEj79YQxM/mUCOP/rDjz8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABREri/J+XNP8VINsBAI+G/nogBP+JzVT/kGKc8aZ7vvYqs0LyD3t48erYBPRc+Tb7HHns74lKiu+1W/DyIw/k9DQ1YO/PIyb6bE668/1NuPLqs0z2duAS9m41sPQbUAb7XzEE/+iYuPSebK7//DXk/zhHivgRSCz/PwaI/EXLwv39ngD9GbzrAGIYWv45G5j96Kiq/rsfPvLpfFj9KSA2/6jqPPitL67792VQ92mLavDMF1L0H2AG7QQNwvaEFeL0GqSK+RAlGPtzijDuXOD+9aZk2vZG9s773bRE9Mwu+vfGGAz4cI0M8kXRXvfhRlb5iUWo+DG4qvaUdJj6/iJw90ZNKvecji74HsLS9KNdSvnWGCL4xk1S8OIWzPXZSkb6tqyS+QtUMvp2WGr6reEM9fR5LPc8Wj76UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRNeAGGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
39
  },
40
  "_last_original_obs": {
41
  ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVdi8AAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYALwAAAAAAACuSYINv1rw/9SdCzN3T7z8IGU6CoVlbv67ELv/e0Xg/uUr2qV8Igj8z51WGgnuBP8vqHyHGP4E/mM/WVklSgr+UxGxPvMpmP77/SGgGknG/ZhfrFHmocj+KZJyr/hF2P7T6ewZ9LGa/Gjh6mgzScL+Msr/JYxyEv7bWP1aHxH0/YyVX2832gD/gkfOS2OODv3veTT188HO/OugvfWx8eT+vzDE+dmqCP0ATHAAI9V8/ANHoz1hBNL+YFfzfkz1TP0lrRRxtHIS/n6zzI38cf7+nJ7uYvReDPxCCXU9sLEg/wG10BBctXb/CTdZl/39/P88FdGwfn4E/UEAre89qV7+wPhrheplUP9BqMc7NCVu/usaQkzPleT/o/ePuVkJbP2anBVREiXg/E4l0uy8ygz/A+G2g35NYPxbYNqQf8Hs/ngxFJf8YdT+khx2aJSxnv4YZvVA60oC/ATYJXYregj9q9YHfUnt4PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjaaqhom6pT9jm1bRnlL+PwbeKWMgo/4/+KOmETGRpL/RDlCrSAKgPyIEiDn6RUg/dwSrL/XeD8Ax38MOKUS2v6gE/iS0QrE/Cxxn6J7QIUBnKvU99GuEP41Uq2LTlLs/hNO50jUmvT9GY4u+NyFlv9TvG4Uxw2I//2jP7lPqFD/WiQA/NQjfv13N+5GULIq/6n8Fu/jihT/9C1qEdxgCQCHEx6y90ao/3kJWu0rNrD9EnPvWqpC1PwXrFjpgIkG/cy8g7DesUD9eaNbnDOU4P4R27X8AZN2/DLGApcqZkr9sLTQpO0qOP7rk9pf7dhpAMmGTrE+QqT9cWuXak8fCP9eSlz22HMg/2hrWlIU6qj+qFF3wl91QP9tDYvQmDyU/hgYCf5m14j/8NCU7JGzcv4k/z9xltFE/fNfX/soBE0BjBtqGAneVP7gkvl9vnec/RyA1NYst6D/HEv0JVmm8PwJW5/r0rIA/x8+EzCwXVL8VVF21TE72P+OpozQ/Psy/EnxOevaOj79eIZ5uqgsGQCYsdJUUGo0/4X6LaNVN7D/Woybd1p/sP7gUOaG0Krg/FuV1js5OhD/TSWb4gGtRv+D598AK9fM/+shNCoEewb9a3NBaZ8WMv7uyzL46Rvw/wE+sYRSJqz/g4VWAuBDCPw5zrMpU5cc/JKN0/aQlrL9gTy/bCo/jvoc5xkO65SO/g3Nx9P7x4T/IbShliMbdP1yCfMerblk/fNfX/soBE0CYal652hOhP71I8ek5MOc/iiP5B1In6D8lks/Wm5nCv3AuQrr4gES/WuMRMAg1HL+ZQlHBehj2PypocLWEcdI/8eryqfg9UD9eIZ5uqgsGQAl47f4APZo/rEHJ8yjr6z8NfPk0c5zsP0zJsdCojMG/LNOfyAIaWb9OBTDntbMvv6ZU74NK0vM/LuWaao8IyT8fJD8uMudhP7uyzL46Rvw/UXRGjwEtvz9vQasu+yjKP8xfyOStF9Q/0cInNAoQwr+UMP7SkFppv6XP8RD0hoa/yGeA3moc4r846JMg22Xbv6CnGjsRMZi/fnZmIcmT+j/sjN+Lv1q1PzS9Ra2A+54/Ee9M2KjBuj9pGkXRHWymv454rPP5A3i/Zi7VcfaAfb9wg9fKfoPEv7J2CXTNUdO/mEfObztfiL99O1VWMqzzPydRiX5RI7w/qB9dIXFkyz8EIRXuifbTP9u4KDebcsE/pDaas6e0bb+GU7OdgUyGPzKFCFjWk+K/kmZsB6zW2T9eXtV5NXqYv352ZiHJk/o/ia68pTZFtD89xY7jPDuhPy6Fh/2uiLo/aFUu/IpJpz/olxStZtV3v45AGa+BtHo/0ZH1jAUDxr+Ef4GqN8vSP37DszKcHoS/fTtVVjKs8z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvFXS9g75/v1wiGYLe0YI/XlTJ/Qs4Sj9k6hBKnCE5vzZvu6YF31c/lNN87RA8jL8/tAvuvVCAv/SNNASlRpE/5CAV4Ep3UL86wUelKstNvyIrRpbhUFE/7yFePKuXj79gktFrf8dEP2gNnYTGgZE/y4yylkdAUr9+wckCN4tOv0vkng0umV8/tPswX/eYj7/dX6Jh6lRIv9XqXd5NlY8/oNtmLPIrJz9uzktXVlhRv1N1P7f/QWA/Bq7YkKG5j79Ihh6BssNDv/MP5smno4I/CBAC2xX1Lj982gwXlIBPv6S9YlRbGmA/XNy7M+gnkr9Ihh6BssNDv/MP5smno4I/CBAC2xX1Lj982gwXlIBPv6S9YlRbGmA/XNy7M+gnkr8Huy/ALMBWv2qOpTDi/po/ixey/4Befb/6b0GjNRZZv/mp1TtbaFo/xE1vPhsXkL//vrfopQBWvxI/IEjXdZk/1mqg/cVPfb8MfkHLaZRYv6YS2vxwV1o/RQfx3k6ikL//vrfopQBWvxI/IEjXdZk/1mqg/cVPfb8MfkHLaZRYv6YS2vxwV1o/RQfx3k6ikL/a2EeJwOhgv+xFXnr2QoE/7rrmeM06fT9zu1n/6wdYv4K0ARe5cnI/EnnJs5B+ib+dAQECmIJhv2w3C5HHXoU/lI9sijURdT/KN6xGqSNBv9s9J87dgnA//jwaSl+Kir+WRtrI2PKNv57mMphTXpM/arVVcIORcD/oJR3ZebpAvz35OTH8gGM/xhnl+mo6kb8djeICltuNv4ZkizP2GI4/YDt5SbnFKL+kMNV0qy1kvyVEKYIPUVU/SuarwMMlkL8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyqQgKJGHuT+vHo7okPjvPxAMEvacc0U/ooydAfw4eD9sKbVLXZVpPyDAmh2LSlM/sQmuw6vXcr+QXa+Vn0Brv1Izwa+nd2O/4LINSvukSr88fIhRYzNlP4AH0ljqbEQ/O+SiV92JgT/IO8gJdEVkv8P5pkAHAoM/YGN0LVHwO7/Zx/2g+VqCP7g1eF/bP4G/4f1sz9GQdL+CldN7mpB/P3C3ipPm/W0/YCjEdAV5X7+A/tqH58xmP0zqFEB37m6/PvXAcNxffb+CIcUZ30d/P0D46xml73K/pOG4hsU1cb+rablqHueCP2/gtDHVWoQ/ERll2WR3gz9p4xWbm+GCP5/chqtYt32/PL9vMnQqaz9SToh4Kit8Pw1OA29MBYA/5iq4e7sxfb8nwjeXHrqBP+DPmwGbgju/mzgEYKSpgr+ghOQcJ4xMP8RTYnyEGmg/gBwidCPgZj9gxhOMEKBNP2A0/W3g/Uc/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACzxDPISzalP1pap27IaP4/ktxctQi3/j/76vPvK8GKv9TBl08HGpg/wxBQ9pA/Ij/f+HxS0OsPwLEvZgOY1Zy/eRoTRTerqT8LHGfontAhQNaboBDMOoQ/7wa0w2OHuz8Ed9yl0ha9P1A9qaP6dkm/4rVN73e7Vj/c/EL9j73GPpUeCru9Ad+/023rCrJ0b79CxjEtL4h6P/0LWoR3GAJA1OFPHqjOqj9io7CrVLCsPxIulOfagLU/Phh2ifL8Lb+EpaT+fltRP7txJStDSRI/oJm1/TBM3b9WAllZsNZ5v1krAJXKXo8/uuT2l/t2GkD0bzLLCBSqP/SOtlEIkcI/1IgYzOwGyD9cxOnJDcOqP6rLmbQoqVK/8quHq1dFUD98rxYPGnriP+Svtf4ry9y/QBMIpVVhhT9819f+ygETQGTOZleOtZg/NoJvToh85z9Dtz1L9ifoP10ZKWDP974/V1SgXoqgYb9h4/pjS8Y4P8rAHHZJPvY/RVZf5vC9zr9u0+PpYMFxP14hnm6qCwZACpHEZSlokT9QH0vIJzHsP3vkCXDJm+w/izDmWARbuz/CSTD1tTdbv0Q4tkSmhyo/tBw+oTDr8z9N2uG/V2rDv8kTs9BIUWM/u7LMvjpG/D9mC0y5nJWqP0BStiRAXcI/+trF3pf0xz8NzCxG/Varv8jUsvET+CA/9XCCbEyiNr/qimgkJ0PiP9dRXJ7KJt0/pLl8p3WYbD9819f+ygETQClV2EhVjJw/RvYcIlpd5z8Xhrk4RifoPzFfZlSR08C/rFt2e0EWbz8/0Oln19dFP5PyTY7GLvY/XOzRT46v0D8blMLMbr98v14hnm6qCwZA+HvsN/f6lD9Q1jjxIRXsP/GeEqDbm+w/+K/E5iq3vr80AwbJHhZ2P/TTPqSeREg/eO3U4CXh8z9r4bpE19fFP9SPNUPIaX+/u7LMvjpG/D/614ZyQQS+P1+SNKCbq8o/zZN6/TcI1D+1CKFH2tbBv9GnEAtmPnS/nkrnaO30iL87yGZ6wEriv6A9wiBhzNq/XmJJMFJfnb9+dmYhyZP6P5nllUE407Q/2qtiSs4koD+d9VAE6Xy6PzeQWUfvn6a/wPdKRu9Ver9RccGvmEqAvyeMF9ZOB8W/rFQl/poM078K0Gl3w2uPv307VVYyrPM/3uH57Kw5vT9oXUnmKf3KP9YBDPxgC9Q/ADrqVZuxwT/MnzCPHztuv91TzxizooY/btIgt5lt4r//1VtJ82naP+itQjtsAZm/fnZmIcmT+j8bFrJwprG0P+1i7lO/k6A/+Nr2k2Omuj+ujP22WAenP2OcOajbKne/uDrBxseoej9p4GXMnn7Fv3Lzhzyy/9I/vWVtIVlKg799O1VWMqzzPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxrGaY/MX8/rw9bP9C3cr8hvx6mwJpxv1c2SWZZG2c/BKATB3vFdr8yBE8c0lV1vxpQFoTOL38/woTtIP3wdT/6YbpmUUF0P89EIUcDdGE/IxlMbWVXbb/SBz1ZEQl+v+zJV06Uh5E/Iyi6EvE6dj8jTtHV+Eh0P+bUGUXeZGE/dspp3+NeZb+w3/47pQZ+v0sRH+8Y9Jo/hGnpf2L7gT+IfSGq+etiv4nI/rpNUmc/SVfkDfsPaL/3pt1OPOR6v4ygyIIAAJs/GI6t11AvXz9iTP1wTK1ivzgl+4Z8hmg/3r128iAkaL9rLsChM26Cv4ygyIIAAJs/GI6t11AvXz9iTP1wTK1ivzgl+4Z8hmg/3r128iAkaL9rLsChM26Cv7bc7Anz2YI/rFkdjgbgjD9DutjWLoqIPxqChy9v9GY/wHO0qSeiYr/YG+77jJV8v6c5jg/G14I/dHfUhBW8jT8IEC5D3YeIP5WjrRAG42Y/K5eGsQqfYr/u+nyYpvl7v6c5jg/G14I/dHfUhBW8jT8IEC5D3YeIP5WjrRAG42Y/K5eGsQqfYr/u+nyYpvl7v/MABMZQVCY/BiFZlfpVgr/wjSPFHAB+vwcUWrR1vG0/2uZQ5jD/fb9bJOv9RQZzvzc+SkLKPi0/7AEsCgeihr+DrDhX3I11v9HJxgU3vmU/SpglBhvye78dpepl0dVwvzHJL/aCToQ/ZLo2NYW8dL8RAba+1tNkv1DnjH+bxWk/WovesE4Zc793Nkt22gx2v/th+j6rToQ/ymGeEjvXdr9mwpn91Rlpv3j0T9dOymc/gdBesY+hc79z7GFWz4Z1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACnXjqngL+7PyI42GhHs+8/VA+CP8ejcD9g2zrBIsY9v8BemqAQel0//0TeM195gD+XEzVV1SiBv4BuCOr4XoS/IAHj/+NXTr/IY+d4dNppv9/pQNWsBXa/bD9G1kwGcj8Q6NepTTVEP8BoEgsILVA/dqdQA6d3bb+RTGTy5yeEPxr//ptyXXe/NLbl8Amvab+XvhfZXuOBv5CYQIlkAU+/vCinDc1ig7/tImcARRuBP6COSVXPjkS/0tpYTc39ar/Sbs72Ot9wv/YjKodUtWK/qI7vzFgKXj+kQSYNThVvv1wAQg3fW2q/WL5g+JEegL/Jc3hOPVaCv7anC4g56nY/upkgxg40fT+rgwxsPlOEP1EFu0Qv3IG/SDObB4MJc7/aL7X/xdp1vzLkFtK6knk/tBptDyMOYj+uS1Fd2IJ4v0JQS9Pw0Wu/gOPJFY1IZj8QIDva7jlNv7MsYS13h4E/UDIKT0SdWL8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOjJx1IIGqU/8hENdmFx/j94UWpuQ8D+P5Itg4E5Aoa/c7VU6yW8jL90k2vzPYAvv01RePj/8A/AsQDIoHL0l7/qXymsPtyfvwscZ+ie0CFAq+bu3809hD8rX2mkDYm7PzblFyoSGL0/E0A0IQzPSb/j/E0gtPNZv3iAOs4OgBC/pWEWSXYC37/CMNQRqWxwv0D8XYKtTH6//QtahHcYAkACQovhssuqP2OLXAHwsKw/oLXJpJiCtT8GQER/JCYnv3IWNZnqPEW/0wA8zzHcBD84CTH9HU/dvzY/ITSAg32/qNAgS/Aog7+65PaX+3YaQDlDXhD0/ak/NDZAnZ2dwj8CW9hphArIPygBP+QSs6o/gqdwk4l0ar+Rt67GTOFUPwimqZqwhuI/mbY5pDi33L+gvsaah+GMP3zX1/7KARNA/B/IL/OwmD8UULplDYbnPx8JbjI6Kug/Wr3uaEOivj+/zLLwaWKSvwFW5dJi8mc/OebUQlVB9j+1Mjyyb2jOv5AwExuzZqE/XiGebqoLBkDA49AOSpKRP8Dc5WilOew/HDipJIKc7D/bQOiHLfK6P6Nb0fMfp5a/zsOJQum8ZT8CYNM7l+zzPw9U1d6WHsO/yn79HsISoD+7ssy+Okb8P0eZMCBKpKo/XoGxgJFMwj+EYzlPauTHP5sKk9YER6u/UaOt6OxaZr8qdHB0ffxQv58L5unkMOI/Zh2N8WUs3T9PzQN6yrKGP3zX1/7KARNAglWh6J0mnT8mryIV8FfnP2gkpOU0IOg/v72ZDujhwL/3VEVAFcCRvw3GQlABgWm/J/0fupQq9j/ompqOOcDQP+HOpgghu6A/XiGebqoLBkCYmBRG6LeVPzkYaGsyEOw/ZChgPviT7D8pVic53Ny+vyGY/FyY6Za/CFDu6lxUab9ifEc30d3zP6WEqFBT9sU/0btjDgNOoD+7ssy+Okb8P/MfGChERb4/M8XT0ke8yj/YUtt1sBfUPxP7yi7k4MG/ViK3YXhYg7+jm660KIqPvy1TCdNsS+K/EbZMxmng2r92xRkkCVKlv352ZiHJk/o/mIXZqFQxtT/lSS5ovCWgPy2oeAy9uro/ve8x4O2ypr8ARQRO8qZ8vxytnaqKjoK/UvcfAND2xL/q34UGWTXTv3XIpGxE/pO/fTtVVjKs8z9l5t8K2/u8PxZ3pWWRvso/8NJaJ17W0z9tup+5nXvBPwR/jWdeIX2/JiXNLbx0iz8gkBbUy1Div6GFe8iISdo/7G07gy3Hob9+dmYhyZP6P46ace/YBbQ/bo4uvJt0oD8mKb89jsm5P0AvSUU6faY/ntMNUljVd7/iw/PFKyx9P2hVCeIOdsW/gOXBlzSW0j+8hfZ9jzWHv307VVYyrPM/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwyqU9hi8Yr89ypko1WlePzyBvtf3+W6/xT/UXSgIRL/gTPyJtAp0vwzqOyAVIHS/h8U0KDvaYb/uOedjHoZ4v5eyfDkc7ny/QKSqXDJbH7/3UQC20ed2v+z8laDqbWq/RwaKs8bLhr/rHvqpbfJ4v9jKTn08kX2/C4mVAzWmHL/x7uw2n5B6vxIRd/kDcGq/XEUFv3iHd7+wjIWYGwpwPyA9kmb2DPS+he93xgMVS7/CUPEGvip5v2OKGWSM7Wm/XBHXX7LTd787PWRFEOGJPxXsDFGWKwa/IdsJFV2LUb+CXR9kSiR5v6Ds2LYefhW/XBHXX7LTd787PWRFEOGJPxXsDFGWKwa/IdsJFV2LUb+CXR9kSiR5v6Ds2LYefhW/wC7VskI1e79gGy+wxY4sP7/K6ucHyV2/bVervZlwPD9itBmPOXl5vwwU45zFV3C/VO1EB/kce79InKT+8URgv7I6YWn8sl2//Ml5b8YzQD93NgsvgXp5v1Z+NN30h3O/VO1EB/kce79InKT+8URgv7I6YWn8sl2//Ml5b8YzQD93NgsvgXp5v1Z+NN30h3O/TzvbEOFQfb+fphFAzuhdP/b6YvCysoG/UMVIn1RSLj9NDM+qFpZ9v3SBQiAEhne/YdELVs1Ufb/Q0TF33HMbv9D551G2i3u/XxlhTMh8Rr9UZaqy5ap7v5UzbZkzmXW/35nscj3laL+3ZiUUv9mAPzYJxIOqAWA/AKP1oafs977zzx/v7nNkv3qYhXSvtn6/Lw42UaLtaL+6ncOAjAKDPwC5t2n8xWg/NnXIcRIkPz93ht+BalBivw6ww8hzwn+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEC4p3HNiro/Sf1nn+UQ8D9hQdE/Z/h1v5iMkEAT6FM/ABaM5TEMEr8gES/mG24yP8WvcrSNUoI/DIR9rbElbT9soSK20EV7vzhK3O+IQWU/GEM0jSuhXb/DdTFwT0CEv8AunHhoOTy/VzhOD9e1fr+AhDgRfBlsP/NW6Wxy5IE/EquyzjWIcb9I/NRiwAxyP5iWilRm3VG/4H4KUV7XWb8PySxREDyCP+KuSW/4BWW/3Y2lcS+pgz8A+mLv0a0tPz52S1bJGIC/VXTUww2vdL+5ojeVCZ2APzZG2x3cYHG/cIv7eRvYWj+9eP7cuuCBP1Ti/YQR5nM/RmM8/8uGeb9KUw1EUP5/P4A2stCqdT6/dh8ZOsiOer/opCXs9mqEvzgr2tCJM2i/VznZ1hd7dr/ihcJonVt+P/EwaYCgkoA/Ap8wOtImdD/oh75QCPtoPyblngMSZ3m/sEqIfEBMXT+QzOrTF21PPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOV9IZAoZpT/jUiXwNFj+P51xhNKxpv4/6Y/wKqpXcr+05caIOxKRP8DevEmhOjA/aBTaN9jiD8DjQmrrMoyEv23RP2i70qI/Cxxn6J7QIUC//XLBfj6EP87DUh+Cn7s/y7tGmvotvT+D6ezvcHBCv+KQShD/Vlw/ZJ+GJPOOEz/c/yDwZg/fvxmJkHebhWW/LgYehcSCgD/9C1qEdxgCQLy7H5kEz6o/xaeVlUzdrD8M9tDM8pa1Pw8qHdHEtze/Wr9U7PIwUj8qxMWM188rP2mc8MRedN2/RcM0S6mMdb+ZwplhWliQP7rk9pf7dhpANzEbvoVfqj/JZpl9f2nCP2Tfp/128cc/51lMYprVqj+w56xDqktXv64tcIP8PFQ/yfEYWj9Q4j8oqZGPS/3cv055Ir5Dcoo/fNfX/soBE0A5SJJcxMWZP54XW/qfX+c/S3ZDl5gT6D8lUw4GN66/PzR0OpjKWjy/y5b3PgQJIj/on2yo9i/2P6D/ze1ff8+/hGprwbQVWT9eIZ5uqgsGQC7G8vahVpI/XBqldR8X7D9xneWcK4nsP1WiNVjSPbw/XDYi2ke5YT/c7+9qe+Yxv2uQf9vv4fM/uO4V4aQUxL9QGT/AUDRpv7uyzL46Rvw/uKWPnutqqj8a2/PIKmrCP26ZSG4H98c/9E+Empc9q78covP31oEkPxnU867GGi+/VTYVjNRQ4j9QotRAogrdPxEW8Pr6hmM/fNfX/soBE0Bp9ezqCOWbP5vrVv58aec/qHB4Jnwu6D9zjeYi0Z/AvwGYZlmUyFA/mrihTKMyKj8IJshK3TT2P5TqZHimedA/vn1PnKOQYb9eIZ5uqgsGQF6J2K11YpQ/XSO3fRQg7D//V+2JlKLsPzcVlnUxOb6/VegimnRSQD8uAGY/kZ4RP38h75ci5fM/40EulPJ5xT8uR52TTzJHv7uyzL46Rvw/vb83SETIvT8lzPaFtIbKP+hZj/8Q/dM/n2ntE7u8wb+oM5bfJFlkv+g7qWyq34S/7xge9vNC4r/rxqkXr7zav3ei0BcPvZW/fnZmIcmT+j+qedIFgsK0PyCg4sot9p8/XBfFnFBquj+lgvUzxpmmvz/U9kmle3O/R6JdgLZVdb/5s5jdtQ7Fv70/eVMvAtO/PYJDpWfobL99O1VWMqzzP7ARowF3Yb0/1Iw/gO3Oyj9UYmxroe/TPw6W2LwOp8E/0DdpYLGSeb8I2iwv1piKP8azXnyqVuK/QuJlQrt32j/A77QBbIqgv352ZiHJk/o/fXsa8L6jtD+47ZNz1GSgP0DM0sAQXLo/HAsyY4iqpj+27pTFETp6v2qlQHNh5n8/QvmDPkQ5xb8cXeePzvLSP4xcOc7V8o2/fTtVVjKs8z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcmgtEwLh0vwWXb5RthYA/UwcdUKiucb8b4pDYhpqDP5X285JjnVq/MMc+rfMch798a8fT5rx0vxCfeHyJN5E/SxYdHg21Zr/vufE8w1+CPx1vDSwxM1W//nA68aLyir+A+3jvltsqv3AAo/KwN5E/w2JdNF/XZr9hLT1Wu1+CP41SSex2Ikq//F42l3Lyir+moh2Rs0B6v7kIik3k2ZA/NeR9tYeudD/aZPTCJcKAP1hcXGtMEDy/uZcA6QMxjL9FYhEYe1N6v/GZ72lrfZc/OIMREOBQdD+e+ibynnqAP4NuCMZYBTq/8IVg9HCAh79FYhEYe1N6v/GZ72lrfZc/OIMREOBQdD+e+ibynnqAP4NuCMZYBTq/8IVg9HCAh78YnuEutRqEP8ItGdb8PIc/ZXbUoFMlJj8tuxuTOP6CPyjrRSFpy0S/Vl3LhpRtjL+s9VxOZjiEP6cNSprCHnA/VMgaZhegLD/xCMTkM0qDP2iTGBYOVUW/0epaCyvnkL+s9VxOZjiEP6cNSprCHnA/VMgaZhegLD/xCMTkM0qDP2iTGBYOVUW/0epaCyvnkL+SlX5bi29ZP1UbRQR9VYA/KpIlN08tZD/kN++zsD+BPyLoa1W3mls/X47CibK5hL9V6xhwyWRZPxZlLTtI9nc/jBO7hnkLcz+xzaGl4l5+P8Pvw2EfKWI/BqXwYy2rg7/Z+vChvruEv/TF9XXTRYg/EBCnS/3+dr/KFuActauCP362aoHtZGS/dCfG192jiL8qmTg2G72Ev3Grtp0M3oY/xsqWhYO9eb/amcZMnwWCP7ihLdibvmW/w7O9KrVKiL8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksETXgBhpSMAUOUdJRSlC4="
43
  },
44
  "_episode_num": 0,
45
  "use_sde": false,
46
  "sde_sample_freq": -1,
47
+ "_current_progress_remaining": -0.6384000000000001,
48
  "_stats_window_size": 100,
49
  "ep_info_buffer": {
50
  ":type:": "<class 'collections.deque'>",
51
+ ":serialized:": "gAWVGAIAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQOLOOVAeJYWMAWyUTegDjAF0lEdAL+kep4rz5HV9lChoBkdA4wJ1unl4kmgHTegDaAhHQC/nLeQ+2Vp1fZQoaAZHQOGLcpoIv8JoB03oA2gIR0Av5aZhKDkEdX2UKGgGR0DjgBHjG1hLaAdN6ANoCEdAL+QN0/4ZdnV9lChoBkdA4i3EvhQ3xWgHTegDaAhHQDU07o0Q9Rt1fZQoaAZHQOOwWvjGT9toB03oA2gIR0A1M/jbSJCTdX2UKGgGR0DjnwfekYXPaAdN6ANoCEdANTM+NcW0q3V9lChoBkdA4b5yzTvy9WgHTegDaAhHQDUyhVU+9rZ1fZQoaAZHQOGvTw5FPSFoB03oA2gIR0BBDkyULUkOdX2UKGgGR0DkO7N+uvECaAdN6ANoCEdAQQ3S0BwMpnV9lChoBkdA5zRSoTXarWgHTegDaAhHQEENdhy8zyl1fZQoaAZHQOPzlnrt3OhoB03oA2gIR0BBDRd6cAindX2UKGgGR0DnGqXtDUmVaAdN6ANoCEdAQxNHYpUgjnV9lChoBkdA4xaOQTdtVWgHTegDaAhHQEMS1jy4FzN1fZQoaAZHQOJXNrwBo25oB03oA2gIR0BDEoP9UCJXdX2UKGgGR0Diwe10qYqoaAdN6ANoCEdAQxImPYFqz3VlLg=="
52
  },
53
  "ep_success_buffer": {
54
  ":type:": "<class 'collections.deque'>",
55
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
56
  },
57
+ "_n_updates": 20,
58
  "n_steps": 2048,
59
  "gamma": 0.99,
60
  "gae_lambda": 0.95,
HumanoidStandup-v4/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7c93ca83c9cfb65bc594496b10909d401fb7d532c21eb3d559b0ab078674fc80
3
  size 472993
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32dd2697f1032c27ea5aa9552df5a2cbd33ee412a199e4226d9ff849be4d0c95
3
  size 472993
HumanoidStandup-v4/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6ee96f9debc895e00a4fee4c6519e82edb889a451eae8692c6ba1ac42482e4e2
3
  size 235951
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a2dc74aeef43c7a916dc93091be35511c14f5ec1aa4ddfdb7e77e4bd5584dac
3
  size 235951
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: HumanoidStandup-v4
17
  metrics:
18
  - type: mean_reward
19
- value: 153935.83 +/- 5242.69
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: HumanoidStandup-v4
17
  metrics:
18
  - type: mean_reward
19
+ value: 28588.33 +/- 868.35
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
The diff for this file is too large to render. See raw diff
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 153935.8250228882, "std_reward": 5242.690458557574, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-12T16:31:43.527124"}
 
1
+ {"mean_reward": 28588.33086643219, "std_reward": 868.3509116279528, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-16T08:22:49.505228"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bb418cf2164b2ecbd81bf21ead91fca186aa033349b7da4818bbd2900d3020d3
3
  size 17358
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a94aae815922099a86073486ff0ab74dbe10d7e9dc1e81912b3414104c5c7b8e
3
  size 17358