Upload PPO Pendulum-v1 trained agent
Browse files- Pendulum-v1.zip +3 -0
- Pendulum-v1/_stable_baselines3_version +1 -0
- Pendulum-v1/data +105 -0
- Pendulum-v1/policy.optimizer.pth +3 -0
- Pendulum-v1/policy.pth +3 -0
- Pendulum-v1/pytorch_variables.pth +3 -0
- Pendulum-v1/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
Pendulum-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c68f92b09651c13b81942b2dda7c66f7a4fecd9cce2ce93e22655c58e1138758
|
3 |
+
size 138043
|
Pendulum-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
Pendulum-v1/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x79258799edd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79258799ee60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79258799eef0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79258799ef80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x79258799f010>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x79258799f0a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x79258799f130>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79258799f1c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x79258799f250>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79258799f2e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79258799f370>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x79258799f400>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x792587952480>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1722851737140460513,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHrqVL6wZ3q/bbuFQJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwIxCbNyHVPOMAWyUS8iMAXSUR0CZFfLSeAd5dX2UKGgGR8CQWPTfixVyaAdLyGgIR0CZFvgIhQnAdX2UKGgGR8CQbGNet0V8aAdLyGgIR0CZGTT5ftx/dX2UKGgGR8CM7b1hb4ahaAdLyGgIR0CZGkIyTINmdX2UKGgGR8CKUN5+H8CQaAdLyGgIR0CZGz/I8yN5dX2UKGgGR8CNUdWCEpRXaAdLyGgIR0CZHDLowEhadX2UKGgGR8CPIIOwPiDNaAdLyGgIR0CZHSjNIK+jdX2UKGgGR8CMdeRIz3yqaAdLyGgIR0CZHiofjjrBdX2UKGgGR8CM/Yg8r7O3aAdLyGgIR0CZIED0Dlo2dX2UKGgGR8CMCS/GEPDpaAdLyGgIR0CZIS+9alk6dX2UKGgGR8CL/BxGUfPpaAdLyGgIR0CZIjqgAZKndX2UKGgGR8CNevpt78ekaAdLyGgIR0CZIzC+De0pdX2UKGgGR8CL3EnEVFhHaAdLyGgIR0CZJCsuFpPAdX2UKGgGR8CIWazxgAp8aAdLyGgIR0CZJn/z8P4EdX2UKGgGR8CISvDhLoOhaAdLyGgIR0CZJ4EP1+RYdX2UKGgGR8CP7SBClabGaAdLyGgIR0CZKHhQ3xWldX2UKGgGR8COUdMK1G9YaAdLyGgIR0CZKXoF3Y+TdX2UKGgGR8CObpeXRgJDaAdLyGgIR0CZKohJRO1wdX2UKGgGR8CIWi4EOiFkaAdLyGgIR0CZLMw6hg3MdX2UKGgGR8CMbJ1p0wJxaAdLyGgIR0CZLdEMLF4tdX2UKGgGR8CLcZ7SiM5waAdLyGgIR0CZLs1pj+aSdX2UKGgGR8CPyJjJ+2E1aAdLyGgIR0CZL795hSccdX2UKGgGR8CL8D863iJgaAdLyGgIR0CZMNJpnHvMdX2UKGgGR8CQCeJ6IFeOaAdLyGgIR0CZMwr6tT1kdX2UKGgGR8CMJinhKlHjaAdLyGgIR0CZM/SAH3UQdX2UKGgGR8CEZMmv4dp7aAdLyGgIR0CZNNv2GqPwdX2UKGgGR8CINiyprDZUaAdLyGgIR0CZNccC5mROdX2UKGgGR8CNFvWwu/UOaAdLyGgIR0CZNtFeOXE7dX2UKGgGR8CQVBjMFEApaAdLyGgIR0CZOXf1HvtudX2UKGgGR8CQkaDFId2gaAdLyGgIR0CZOrfdyksSdX2UKGgGR8CIP8oESuhcaAdLyGgIR0CZO+eqJdjYdX2UKGgGR8CNQQvFFUhnaAdLyGgIR0CZPSD0Dlo2dX2UKGgGR8CNWSsCkoF3aAdLyGgIR0CZPnWweNkwdX2UKGgGR8COfC7cO9WZaAdLyGgIR0CZQZI6bONYdX2UKGgGR8CNgzkfcN6PaAdLyGgIR0CZQofMwDeTdX2UKGgGR8CI+MAI6bONaAdLyGgIR0CZQ3uXeFcqdX2UKGgGR8CNVzSG8EmqaAdLyGgIR0CZRGpH7P6bdX2UKGgGR8CQsYXF98Z2aAdLyGgIR0CZRVsenyd4dX2UKGgGR8CQhFBsyi22aAdLyGgIR0CZR4Np/PPcdX2UKGgGR8CKMLri2lVMaAdLyGgIR0CZSHRbbDdhdX2UKGgGR8CMFpER8MNMaAdLyGgIR0CZSVznied1dX2UKGgGR8CMvcgXdj5LaAdLyGgIR0CZSkqYZ2pydX2UKGgGR8CICZVCojwAaAdLyGgIR0CZS0E6T4cndX2UKGgGR8CMHDAvcrRTaAdLyGgIR0CZTV4QSSNgdX2UKGgGR8CMqlrVvuPWaAdLyGgIR0CZTk9ph4MXdX2UKGgGR8CL8Si+L3sYaAdLyGgIR0CZT1BD5TIedX2UKGgGR8CNSWCtA9mpaAdLyGgIR0CZUEU9IPK/dX2UKGgGR8CIYiPnSv1UaAdLyGgIR0CZUUBLwnYydX2UKGgGR8CIpFvqkdmyaAdLyGgIR0CZUjvRqoIfdX2UKGgGR8CIEq7q6e5GaAdLyGgIR0CZVFeqaPS2dX2UKGgGR8CE1roEjgQ6aAdLyGgIR0CZVT/ATIvKdX2UKGgGR8CH6su6ErXlaAdLyGgIR0CZViwyIpH7dX2UKGgGR8CINZkK/mDEaAdLyGgIR0CZVyGNaQmvdX2UKGgGR8CNBZ1zySV4aAdLyGgIR0CZWBVQAMlUdX2UKGgGR8CM5e8f3evZaAdLyGgIR0CZWjARkEs8dX2UKGgGR8CHWLGR3eN2aAdLyGgIR0CZWx2USqVAdX2UKGgGR8CMzyews5GSaAdLyGgIR0CZXBZ7ojfOdX2UKGgGR8CMa0f7rLQpaAdLyGgIR0CZXPtMwlBydX2UKGgGR8CNatNY8uBdaAdLyGgIR0CZXeeTV2A5dX2UKGgGR8CIDnDvVmSRaAdLyGgIR0CZYAzHCGeudX2UKGgGR8CP2f/xUedTaAdLyGgIR0CZYPOwgTysdX2UKGgGR8CMRdn13+uOaAdLyGgIR0CZYdxuKoAGdX2UKGgGR8CMrXRO1v2oaAdLyGgIR0CZYsg2606YdX2UKGgGR8CFkR9Dx9XtaAdLyGgIR0CZY8O09hZydX2UKGgGR8CIfXJeVs1saAdLyGgIR0CZZeTqjaf0dX2UKGgGR8CNp4A4n4O+aAdLyGgIR0CZZtNfgJkYdX2UKGgGR8CJdrvy9VWCaAdLyGgIR0CZZ8y6tknUdX2UKGgGR8CNDCgOBlMAaAdLyGgIR0CZaLxhDw6RdX2UKGgGR8CISgvpyIYWaAdLyGgIR0CZadJwKjSHdX2UKGgGR8CMrg+QEIPcaAdLyGgIR0CZbK6tknTidX2UKGgGR8CJYSob4rSWaAdLyGgIR0CZbdflIVdpdX2UKGgGR8CMfoV4X40uaAdLyGgIR0CZbx8brC3xdX2UKGgGR8CIQ5fx+a0AaAdLyGgIR0CZcH5mAbyZdX2UKGgGR8CH7gCIUJv6aAdLyGgIR0CZcd18LKFJdX2UKGgGR8CMqbwEyLydaAdLyGgIR0CZdP0Q9RrKdX2UKGgGR8CL/A4SYgJUaAdLyGgIR0CZdfQ40dildX2UKGgGR8CJlhyrgflqaAdLyGgIR0CZdvFnZkCndX2UKGgGR8CEH/vrGBFvaAdLyGgIR0CZd+vQWvbHdX2UKGgGR8CHlW5MDfWMaAdLyGgIR0CZeOdSVGCqdX2UKGgGR8CKtNqOcUdraAdLyGgIR0CZew5sj3VTdX2UKGgGR8CIhpS619fDaAdLyGgIR0CZfAHFxXGPdX2UKGgGR8CBsha7EpAlaAdLyGgIR0CZfQJeVs1sdX2UKGgGR8CQTcO7QLNOaAdLyGgIR0CZffbr1M/RdX2UKGgGR8CPjADSw4bTaAdLyGgIR0CZfviuuA7QdX2UKGgGR8CMUkPT5O8DaAdLyGgIR0CZgS1F6RhddX2UKGgGR8CQ0unV5KODaAdLyGgIR0CZgil9BrvcdX2UKGgGR8CL8FpRoAXEaAdLyGgIR0CZgx7HQyAQdX2UKGgGR8CIMSFB6a9caAdLyGgIR0CZhB12q1gIdX2UKGgGR8CLga1YQrc1aAdLyGgIR0CZhSNo8IRidX2UKGgGR8CJNxsGgSOBaAdLyGgIR0CZhh2W6bvxdX2UKGgGR8CMfhqGDcubaAdLyGgIR0CZiEqqfe1sdX2UKGgGR8CH6tLpRoAXaAdLyGgIR0CZiUAUcn3MdX2UKGgGR8CEVg384xUOaAdLyGgIR0CZii6y0KJEdX2UKGgGR8CEo831jAi3aAdLyGgIR0CZix2Q4jrzdX2UKGgGR8CKBjqFh5PeaAdLyGgIR0CZjBFfAsTWdX2UKGgGR8CNnRr8BMi9aAdLyGgIR0CZjlTpgTh6dX2UKGgGR8CKnUef7JnyaAdLyGgIR0CZj1Dq4YrKdX2UKGgGR8CL7fulXRw7aAdLyGgIR0CZkFBw++uedX2UKGgGR8CNGxkf9xZMaAdLyGgIR0CZkVXgLqlhdX2UKGgGR8CK2MtHQQcxaAdLyGgIR0CZklvovBacdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVrQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True]",
|
60 |
+
"bounded_above": "[ True True True]",
|
61 |
+
"_shape": [
|
62 |
+
3
|
63 |
+
],
|
64 |
+
"low": "[-1. -1. -8.]",
|
65 |
+
"high": "[1. 1. 8.]",
|
66 |
+
"low_repr": "[-1. -1. -8.]",
|
67 |
+
"high_repr": "[1. 1. 8.]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAAMCUaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAAECUaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True]",
|
75 |
+
"bounded_above": "[ True]",
|
76 |
+
"_shape": [
|
77 |
+
1
|
78 |
+
],
|
79 |
+
"low": "[-2.]",
|
80 |
+
"high": "[2.]",
|
81 |
+
"low_repr": "-2.0",
|
82 |
+
"high_repr": "2.0",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"n_envs": 1,
|
86 |
+
"n_steps": 1024,
|
87 |
+
"gamma": 0.999,
|
88 |
+
"gae_lambda": 0.98,
|
89 |
+
"ent_coef": 0.01,
|
90 |
+
"vf_coef": 0.5,
|
91 |
+
"max_grad_norm": 0.5,
|
92 |
+
"batch_size": 64,
|
93 |
+
"n_epochs": 4,
|
94 |
+
"clip_range": {
|
95 |
+
":type:": "<class 'function'>",
|
96 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
97 |
+
},
|
98 |
+
"clip_range_vf": null,
|
99 |
+
"normalize_advantage": true,
|
100 |
+
"target_kl": null,
|
101 |
+
"lr_schedule": {
|
102 |
+
":type:": "<class 'function'>",
|
103 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
104 |
+
}
|
105 |
+
}
|
Pendulum-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffeb55797094608cf6cbd44cd5a743202fdf2a306d67e31698cee6c722109fe4
|
3 |
+
size 82401
|
Pendulum-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84c1deb29a12c9dd8cb81f2dc2067ff723614e8090a8d2f1d5ee02884b147e3c
|
3 |
+
size 40751
|
Pendulum-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
Pendulum-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Pendulum-v1
|
16 |
+
type: Pendulum-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -868.96 +/- 94.96
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **Pendulum-v1**
|
25 |
+
This is a trained model of a **PPO** agent playing **Pendulum-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79258799edd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79258799ee60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79258799eef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79258799ef80>", "_build": "<function ActorCriticPolicy._build at 0x79258799f010>", "forward": "<function ActorCriticPolicy.forward at 0x79258799f0a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79258799f130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79258799f1c0>", "_predict": "<function ActorCriticPolicy._predict at 0x79258799f250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79258799f2e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79258799f370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79258799f400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x792587952480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722851737140460513, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHrqVL6wZ3q/bbuFQJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwIxCbNyHVPOMAWyUS8iMAXSUR0CZFfLSeAd5dX2UKGgGR8CQWPTfixVyaAdLyGgIR0CZFvgIhQnAdX2UKGgGR8CQbGNet0V8aAdLyGgIR0CZGTT5ftx/dX2UKGgGR8CM7b1hb4ahaAdLyGgIR0CZGkIyTINmdX2UKGgGR8CKUN5+H8CQaAdLyGgIR0CZGz/I8yN5dX2UKGgGR8CNUdWCEpRXaAdLyGgIR0CZHDLowEhadX2UKGgGR8CPIIOwPiDNaAdLyGgIR0CZHSjNIK+jdX2UKGgGR8CMdeRIz3yqaAdLyGgIR0CZHiofjjrBdX2UKGgGR8CM/Yg8r7O3aAdLyGgIR0CZIED0Dlo2dX2UKGgGR8CMCS/GEPDpaAdLyGgIR0CZIS+9alk6dX2UKGgGR8CL/BxGUfPpaAdLyGgIR0CZIjqgAZKndX2UKGgGR8CNevpt78ekaAdLyGgIR0CZIzC+De0pdX2UKGgGR8CL3EnEVFhHaAdLyGgIR0CZJCsuFpPAdX2UKGgGR8CIWazxgAp8aAdLyGgIR0CZJn/z8P4EdX2UKGgGR8CISvDhLoOhaAdLyGgIR0CZJ4EP1+RYdX2UKGgGR8CP7SBClabGaAdLyGgIR0CZKHhQ3xWldX2UKGgGR8COUdMK1G9YaAdLyGgIR0CZKXoF3Y+TdX2UKGgGR8CObpeXRgJDaAdLyGgIR0CZKohJRO1wdX2UKGgGR8CIWi4EOiFkaAdLyGgIR0CZLMw6hg3MdX2UKGgGR8CMbJ1p0wJxaAdLyGgIR0CZLdEMLF4tdX2UKGgGR8CLcZ7SiM5waAdLyGgIR0CZLs1pj+aSdX2UKGgGR8CPyJjJ+2E1aAdLyGgIR0CZL795hSccdX2UKGgGR8CL8D863iJgaAdLyGgIR0CZMNJpnHvMdX2UKGgGR8CQCeJ6IFeOaAdLyGgIR0CZMwr6tT1kdX2UKGgGR8CMJinhKlHjaAdLyGgIR0CZM/SAH3UQdX2UKGgGR8CEZMmv4dp7aAdLyGgIR0CZNNv2GqPwdX2UKGgGR8CINiyprDZUaAdLyGgIR0CZNccC5mROdX2UKGgGR8CNFvWwu/UOaAdLyGgIR0CZNtFeOXE7dX2UKGgGR8CQVBjMFEApaAdLyGgIR0CZOXf1HvtudX2UKGgGR8CQkaDFId2gaAdLyGgIR0CZOrfdyksSdX2UKGgGR8CIP8oESuhcaAdLyGgIR0CZO+eqJdjYdX2UKGgGR8CNQQvFFUhnaAdLyGgIR0CZPSD0Dlo2dX2UKGgGR8CNWSsCkoF3aAdLyGgIR0CZPnWweNkwdX2UKGgGR8COfC7cO9WZaAdLyGgIR0CZQZI6bONYdX2UKGgGR8CNgzkfcN6PaAdLyGgIR0CZQofMwDeTdX2UKGgGR8CI+MAI6bONaAdLyGgIR0CZQ3uXeFcqdX2UKGgGR8CNVzSG8EmqaAdLyGgIR0CZRGpH7P6bdX2UKGgGR8CQsYXF98Z2aAdLyGgIR0CZRVsenyd4dX2UKGgGR8CQhFBsyi22aAdLyGgIR0CZR4Np/PPcdX2UKGgGR8CKMLri2lVMaAdLyGgIR0CZSHRbbDdhdX2UKGgGR8CMFpER8MNMaAdLyGgIR0CZSVznied1dX2UKGgGR8CMvcgXdj5LaAdLyGgIR0CZSkqYZ2pydX2UKGgGR8CICZVCojwAaAdLyGgIR0CZS0E6T4cndX2UKGgGR8CMHDAvcrRTaAdLyGgIR0CZTV4QSSNgdX2UKGgGR8CMqlrVvuPWaAdLyGgIR0CZTk9ph4MXdX2UKGgGR8CL8Si+L3sYaAdLyGgIR0CZT1BD5TIedX2UKGgGR8CNSWCtA9mpaAdLyGgIR0CZUEU9IPK/dX2UKGgGR8CIYiPnSv1UaAdLyGgIR0CZUUBLwnYydX2UKGgGR8CIpFvqkdmyaAdLyGgIR0CZUjvRqoIfdX2UKGgGR8CIEq7q6e5GaAdLyGgIR0CZVFeqaPS2dX2UKGgGR8CE1roEjgQ6aAdLyGgIR0CZVT/ATIvKdX2UKGgGR8CH6su6ErXlaAdLyGgIR0CZViwyIpH7dX2UKGgGR8CINZkK/mDEaAdLyGgIR0CZVyGNaQmvdX2UKGgGR8CNBZ1zySV4aAdLyGgIR0CZWBVQAMlUdX2UKGgGR8CM5e8f3evZaAdLyGgIR0CZWjARkEs8dX2UKGgGR8CHWLGR3eN2aAdLyGgIR0CZWx2USqVAdX2UKGgGR8CMzyews5GSaAdLyGgIR0CZXBZ7ojfOdX2UKGgGR8CMa0f7rLQpaAdLyGgIR0CZXPtMwlBydX2UKGgGR8CNatNY8uBdaAdLyGgIR0CZXeeTV2A5dX2UKGgGR8CIDnDvVmSRaAdLyGgIR0CZYAzHCGeudX2UKGgGR8CP2f/xUedTaAdLyGgIR0CZYPOwgTysdX2UKGgGR8CMRdn13+uOaAdLyGgIR0CZYdxuKoAGdX2UKGgGR8CMrXRO1v2oaAdLyGgIR0CZYsg2606YdX2UKGgGR8CFkR9Dx9XtaAdLyGgIR0CZY8O09hZydX2UKGgGR8CIfXJeVs1saAdLyGgIR0CZZeTqjaf0dX2UKGgGR8CNp4A4n4O+aAdLyGgIR0CZZtNfgJkYdX2UKGgGR8CJdrvy9VWCaAdLyGgIR0CZZ8y6tknUdX2UKGgGR8CNDCgOBlMAaAdLyGgIR0CZaLxhDw6RdX2UKGgGR8CISgvpyIYWaAdLyGgIR0CZadJwKjSHdX2UKGgGR8CMrg+QEIPcaAdLyGgIR0CZbK6tknTidX2UKGgGR8CJYSob4rSWaAdLyGgIR0CZbdflIVdpdX2UKGgGR8CMfoV4X40uaAdLyGgIR0CZbx8brC3xdX2UKGgGR8CIQ5fx+a0AaAdLyGgIR0CZcH5mAbyZdX2UKGgGR8CH7gCIUJv6aAdLyGgIR0CZcd18LKFJdX2UKGgGR8CMqbwEyLydaAdLyGgIR0CZdP0Q9RrKdX2UKGgGR8CL/A4SYgJUaAdLyGgIR0CZdfQ40dildX2UKGgGR8CJlhyrgflqaAdLyGgIR0CZdvFnZkCndX2UKGgGR8CEH/vrGBFvaAdLyGgIR0CZd+vQWvbHdX2UKGgGR8CHlW5MDfWMaAdLyGgIR0CZeOdSVGCqdX2UKGgGR8CKtNqOcUdraAdLyGgIR0CZew5sj3VTdX2UKGgGR8CIhpS619fDaAdLyGgIR0CZfAHFxXGPdX2UKGgGR8CBsha7EpAlaAdLyGgIR0CZfQJeVs1sdX2UKGgGR8CQTcO7QLNOaAdLyGgIR0CZffbr1M/RdX2UKGgGR8CPjADSw4bTaAdLyGgIR0CZfviuuA7QdX2UKGgGR8CMUkPT5O8DaAdLyGgIR0CZgS1F6RhddX2UKGgGR8CQ0unV5KODaAdLyGgIR0CZgil9BrvcdX2UKGgGR8CL8FpRoAXEaAdLyGgIR0CZgx7HQyAQdX2UKGgGR8CIMSFB6a9caAdLyGgIR0CZhB12q1gIdX2UKGgGR8CLga1YQrc1aAdLyGgIR0CZhSNo8IRidX2UKGgGR8CJNxsGgSOBaAdLyGgIR0CZhh2W6bvxdX2UKGgGR8CMfhqGDcubaAdLyGgIR0CZiEqqfe1sdX2UKGgGR8CH6tLpRoAXaAdLyGgIR0CZiUAUcn3MdX2UKGgGR8CEVg384xUOaAdLyGgIR0CZii6y0KJEdX2UKGgGR8CEo831jAi3aAdLyGgIR0CZix2Q4jrzdX2UKGgGR8CKBjqFh5PeaAdLyGgIR0CZjBFfAsTWdX2UKGgGR8CNnRr8BMi9aAdLyGgIR0CZjlTpgTh6dX2UKGgGR8CKnUef7JnyaAdLyGgIR0CZj1Dq4YrKdX2UKGgGR8CL7fulXRw7aAdLyGgIR0CZkFBw++uedX2UKGgGR8CNGxkf9xZMaAdLyGgIR0CZkVXgLqlhdX2UKGgGR8CK2MtHQQcxaAdLyGgIR0CZklvovBacdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVrQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -8.]", "high": "[1. 1. 8.]", "low_repr": "[-1. -1. -8.]", "high_repr": "[1. 1. 8.]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAAMCUaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAAECUaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True]", "bounded_above": "[ True]", "_shape": [1], "low": "[-2.]", "high": "[2.]", "low_repr": "-2.0", "high_repr": "2.0", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (466 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -868.9647917, "std_reward": 94.96148636651374, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-05T10:27:05.695680"}
|