|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch InternLMXComposer2 model.""" |
|
import copy |
|
import queue |
|
import threading |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from PIL import Image |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.utils import (add_start_docstrings_to_model_forward, |
|
replace_return_docstrings) |
|
|
|
try: |
|
from transformers.generation.streamers import BaseStreamer |
|
except: |
|
BaseStreamer = None |
|
|
|
from .build_mlp import build_vision_projector, build_vision_tower |
|
from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config |
|
from .modeling_internlm2 import (InternLM2_INPUTS_DOCSTRING, InternLM2Model, |
|
InternLM2PreTrainedModel) |
|
|
|
_CONFIG_FOR_DOC = 'InternLMXcomposer2Config' |
|
|
|
|
|
class RCoTForCausalLM7B(InternLM2PreTrainedModel): |
|
_auto_class = 'AutoModelForCausalLM' |
|
|
|
_tied_weights_keys = ['output.weight'] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = InternLM2Model(config) |
|
self.vocab_size = config.vocab_size |
|
self.output = nn.Linear( |
|
config.hidden_size, config.vocab_size, bias=False) |
|
self.tokenizer = None |
|
|
|
self.max_length = config.max_length |
|
print(f'Set max length to {self.max_length}') |
|
|
|
self.post_init() |
|
|
|
self.vit = build_vision_tower() |
|
self.vision_proj = build_vision_projector() |
|
|
|
self.vis_processor = transforms.Compose([ |
|
transforms.Resize((config.img_size, config.img_size), |
|
interpolation=InterpolationMode.BICUBIC), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), |
|
(0.26862954, 0.26130258, 0.27577711)), |
|
]) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, InternLM2Model): |
|
module.gradient_checkpointing = value |
|
if value: |
|
self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value |
|
|
|
def get_input_embeddings(self): |
|
return self.model.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.tok_embeddings = value |
|
|
|
def get_output_embeddings(self): |
|
return self.output |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.output = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def encode_text(self, text, add_special_tokens=False): |
|
token = self.tokenizer( |
|
text, return_tensors='pt', |
|
add_special_tokens=add_special_tokens).input_ids.to(self.device) |
|
embs = self.model.tok_embeddings(token) |
|
return embs |
|
|
|
def encode_img(self, image): |
|
if image is None: |
|
return None |
|
if isinstance(image, str): |
|
image = Image.open(image).convert('RGB') |
|
image = self.vis_processor(image).unsqueeze(0).to(self.device) |
|
else: |
|
assert isinstance(image, torch.Tensor) |
|
|
|
img_embeds, atts_img, img_target = self.img2emb(image) |
|
return img_embeds |
|
|
|
def img2emb(self, image): |
|
img_embeds = self.vision_proj(self.vit(image.to(self.device))) |
|
atts_img = torch.ones( |
|
img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device) |
|
|
|
img_target = torch.ones( |
|
img_embeds.size()[:2], dtype=torch.long).to( |
|
img_embeds.device) * -100 |
|
|
|
return img_embeds, atts_img, img_target |
|
|
|
def prompt_wrap(self, img_embeds, prompt): |
|
batch_size = img_embeds.shape[0] |
|
p_before, p_after = prompt.split('<ImageHere>') |
|
p_before_tokens = self.tokenizer( |
|
p_before, return_tensors='pt', |
|
add_special_tokens=True).to(img_embeds.device) |
|
|
|
p_before_embeds = self.model.tok_embeddings( |
|
p_before_tokens.input_ids).expand(batch_size, -1, -1) |
|
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1) |
|
|
|
wrapped_atts_img = torch.ones( |
|
wrapped_img_embeds.size()[:-1], |
|
dtype=torch.long).to(img_embeds.device) |
|
|
|
wrapped_target = torch.ones( |
|
batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to( |
|
img_embeds.device) * -100 |
|
|
|
return wrapped_img_embeds, wrapped_atts_img, wrapped_target |
|
|
|
def text2emb(self, text, add_special=False): |
|
to_regress_tokens = self.tokenizer( |
|
text, |
|
return_tensors='pt', |
|
padding='longest', |
|
truncation=True, |
|
max_length=self.max_length, |
|
add_special_tokens=add_special).to(self.device) |
|
|
|
targets = self.mask_human_targets(to_regress_tokens.input_ids) |
|
targets = targets.to(self.device) |
|
return to_regress_tokens, targets |
|
|
|
def interleav_wrap_chat(self, tokenizer, query, image, history, meta_instruction): |
|
prompt = '' |
|
if meta_instruction: |
|
prompt += f"""[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n""" |
|
for record in history: |
|
prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n""" |
|
prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n""" |
|
|
|
im_len = image.shape[1] |
|
image_nums = len(image) |
|
parts = prompt.split('<ImageHere>') |
|
wrap_embeds, wrap_im_mask = [], [] |
|
temp_len = 0 |
|
|
|
if len(parts) != image_nums + 1: |
|
raise ValueError('Invalid <ImageHere> prompt format.') |
|
|
|
for idx, part in enumerate(parts): |
|
if len(part) > 0: |
|
part_tokens = tokenizer(part, return_tensors='pt').to(self.device) |
|
part_embeds = self.model.tok_embeddings( |
|
part_tokens.input_ids) |
|
wrap_embeds.append(part_embeds) |
|
wrap_im_mask.append(torch.zeros(part_embeds.shape[:2])) |
|
temp_len += part_embeds.shape[1] |
|
if idx < image_nums: |
|
wrap_embeds.append(image[idx].unsqueeze(0)) |
|
wrap_im_mask.append(torch.ones(1, image[idx].shape[0])) |
|
temp_len += im_len |
|
|
|
if temp_len > self.max_length: |
|
break |
|
|
|
wrap_embeds = torch.cat(wrap_embeds, dim=1) |
|
wrap_im_mask = torch.cat(wrap_im_mask, dim=1) |
|
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device) |
|
wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device).bool() |
|
inputs = { |
|
'inputs_embeds': wrap_embeds |
|
} |
|
return inputs, wrap_im_mask |
|
|
|
def interleav_wrap(self, img_list, text_list): |
|
wrap_embeds_list, wrap_atts_list = [], [] |
|
wrap_target_list, wrap_im_mask_list = [], [] |
|
|
|
for image, text in zip(img_list, text_list): |
|
img_embeds, atts_img, img_target = self.img2emb(image) |
|
text = text[0] |
|
parts = text.split('<ImageHere>') |
|
wrap_tokens, wrap_embeds, wrap_atts, wrap_im_mask = [], [], [], [] |
|
temp_len = 0 |
|
image_nums, im_len = img_embeds.shape[:2] |
|
need_bos = True |
|
for idx, part in enumerate(parts): |
|
if len(part) > 0: |
|
part_tokens = self.tokenizer( |
|
part, |
|
return_tensors='pt', |
|
padding='longest', |
|
add_special_tokens=need_bos).to(self.device) |
|
if need_bos: |
|
need_bos = False |
|
wrap_tokens.append(part_tokens.input_ids) |
|
part_embeds = self.model.tok_embeddings( |
|
part_tokens.input_ids) |
|
wrap_embeds.append(part_embeds) |
|
wrap_atts.append(part_tokens.attention_mask) |
|
wrap_im_mask.append( |
|
torch.zeros(part_embeds.shape[:2]).to(self.device)) |
|
|
|
temp_len += part_embeds.shape[1] |
|
if idx < image_nums: |
|
wrap_tokens.append(img_target[idx].unsqueeze(0)) |
|
wrap_embeds.append(img_embeds[idx].unsqueeze(0)) |
|
wrap_atts.append(atts_img[idx].unsqueeze(0)) |
|
wrap_im_mask.append( |
|
torch.ones_like(atts_img[idx].unsqueeze(0))) |
|
|
|
temp_len += im_len |
|
if temp_len > self.max_length: |
|
break |
|
|
|
wrap_tokens = torch.cat(wrap_tokens, dim=1) |
|
wrap_embeds = torch.cat(wrap_embeds, dim=1) |
|
wrap_atts = torch.cat(wrap_atts, dim=1) |
|
wrap_im_mask = torch.cat(wrap_im_mask, dim=1) |
|
|
|
wrap_target = self.mask_human_targets(wrap_tokens).to(self.device) |
|
|
|
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device) |
|
wrap_atts = wrap_atts[:, :self.max_length].to(self.device) |
|
wrap_target = wrap_target[:, :self.max_length].to(self.device) |
|
wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device) |
|
|
|
wrap_embeds_list.append(wrap_embeds) |
|
wrap_atts_list.append(wrap_atts) |
|
wrap_target_list.append(wrap_target) |
|
wrap_im_mask_list.append(wrap_im_mask) |
|
|
|
wrap_embeds = torch.cat(wrap_embeds_list) |
|
wrap_atts = torch.cat(wrap_atts_list) |
|
wrap_target = torch.cat(wrap_target_list) |
|
wrap_im_mask = torch.cat(wrap_im_mask_list) |
|
return wrap_embeds, wrap_atts, wrap_target, wrap_im_mask |
|
|
|
def mask_human_targets(self, input_ids, pure=False): |
|
target_batch = [] |
|
for bs in range(input_ids.shape[0]): |
|
ids = input_ids[bs] |
|
targets = copy.deepcopy(ids) |
|
end_count = 0 |
|
last_eoa = 0 |
|
for i, temp_id in enumerate(ids): |
|
if temp_id == 92542: |
|
if end_count % 2 == 0: |
|
targets[last_eoa:i + 6] = -100 |
|
else: |
|
last_eoa = i + 1 |
|
end_count += 1 |
|
|
|
elif temp_id == 2: |
|
|
|
targets[i + 1:] = -100 |
|
break |
|
|
|
if temp_id != 2 and end_count % 2 == 0: |
|
|
|
targets[last_eoa + 1:] = -100 |
|
target_batch.append(targets.unsqueeze(0)) |
|
target_batch = torch.cat(target_batch, dim=0) |
|
return target_batch |
|
|
|
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) |
|
@replace_return_docstrings( |
|
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward(self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
Returns: |
|
""" |
|
|
|
samples = kwargs.get('samples', None) |
|
if samples: |
|
if samples['data_type'][0] == 'text': |
|
has_img = False |
|
elif samples['data_type'][0] == 'multi': |
|
has_img = True |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
text = samples['text_input'] |
|
|
|
if has_img: |
|
image = samples['image'] |
|
to_regress_embeds, attention_mask, targets, im_mask = self.interleav_wrap( |
|
image, text) |
|
else: |
|
to_regress_tokens, targets = self.text2emb( |
|
text, add_special=True) |
|
to_regress_embeds = self.model.tok_embeddings( |
|
to_regress_tokens.input_ids) |
|
attention_mask = to_regress_tokens.attention_mask |
|
im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda() |
|
|
|
inputs_embeds = to_regress_embeds[:, :self.max_length] |
|
attention_mask = attention_mask[:, :self.max_length] |
|
targets = targets[:, :self.max_length] |
|
im_mask = im_mask[:, :self.max_length].bool() |
|
labels = targets |
|
else: |
|
im_mask = kwargs.get('im_mask', None) |
|
if im_mask is None and inputs_embeds is not None: |
|
im_mask = torch.zeros(inputs_embeds.shape[:2]).to( |
|
inputs_embeds.device) |
|
im_mask = im_mask.bool() |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else |
|
self.config.output_hidden_states) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
im_mask=im_mask, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.output(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits, ) + outputs[1:] |
|
return (loss, ) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
im_mask=None, |
|
**kwargs): |
|
if past_key_values is not None: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
|
|
position_ids = kwargs.get('position_ids', None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1]:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {'inputs_embeds': inputs_embeds} |
|
else: |
|
model_inputs = {'input_ids': input_ids} |
|
|
|
im_mask = im_mask |
|
|
|
model_inputs.update({ |
|
'position_ids': position_ids, |
|
'past_key_values': past_key_values, |
|
'use_cache': kwargs.get('use_cache'), |
|
'attention_mask': attention_mask, |
|
'im_mask': im_mask, |
|
}) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple( |
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
for past_state in layer_past), ) |
|
return reordered_past |
|
|
|
def build_inputs(self, |
|
tokenizer, |
|
query: str, |
|
history: List[Tuple[str, str]] = [], |
|
meta_instruction=''): |
|
prompt = '' |
|
if meta_instruction: |
|
prompt += f"""<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n""" |
|
else: |
|
prompt += '<s>' |
|
for record in history: |
|
prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n""" |
|
prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n""" |
|
return tokenizer([prompt], return_tensors='pt') |
|
|
|
@torch.no_grad() |
|
def chat( |
|
self, |
|
tokenizer, |
|
query: str, |
|
image: torch.Tensor = None, |
|
history: List[Tuple[str, str]] = [], |
|
streamer: Optional[BaseStreamer] = None, |
|
max_new_tokens: int = 1024, |
|
do_sample: bool = True, |
|
temperature: float = 1.0, |
|
top_p: float = 0.8, |
|
repetition_penalty: float=1.005, |
|
meta_instruction: |
|
str = 'You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).\n' |
|
'- InternLM-XComposer (浦语·灵笔) is a multi-modality conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n' |
|
'- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the language chosen by the user such as English and 中文.\n' |
|
'- InternLM-XComposer (浦语·灵笔) is capable of comprehending and articulating responses effectively based on the provided image.', |
|
**kwargs, |
|
): |
|
if image is None: |
|
inputs = self.build_inputs(tokenizer, query, history, meta_instruction) |
|
im_mask = torch.zeros(inputs['input_ids'].shape[:2]).cuda().bool() |
|
else: |
|
image = self.encode_img(image) |
|
inputs, im_mask = self.interleav_wrap_chat(tokenizer, query, image, history, meta_instruction) |
|
inputs = { |
|
k: v.to(self.device) |
|
for k, v in inputs.items() if torch.is_tensor(v) |
|
} |
|
|
|
eos_token_id = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0] |
|
] |
|
outputs = self.generate( |
|
**inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
eos_token_id=eos_token_id, |
|
repetition_penalty=repetition_penalty, |
|
im_mask=im_mask, |
|
**kwargs, |
|
) |
|
if image is None: |
|
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):] |
|
else: |
|
outputs = outputs[0].cpu().tolist() |
|
response = tokenizer.decode(outputs, skip_special_tokens=True) |
|
response = response.split('[UNUSED_TOKEN_145]')[0] |
|
history = history + [(query, response)] |
|
return response, history |
|
|
|
@torch.no_grad() |
|
def stream_chat( |
|
self, |
|
tokenizer, |
|
query: str, |
|
history: List[Tuple[str, str]] = [], |
|
max_new_tokens: int = 1024, |
|
do_sample: bool = True, |
|
temperature: float = 0.8, |
|
top_p: float = 0.8, |
|
**kwargs, |
|
): |
|
"""Return a generator in format: (response, history) Eg. |
|
|
|
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) ('你好,有什么可以帮助您的吗?', [('你好', |
|
'你好,有什么可以帮助您的吗?')]) |
|
""" |
|
if BaseStreamer is None: |
|
raise ModuleNotFoundError( |
|
'The version of `transformers` is too low. Please make sure ' |
|
'that you have installed `transformers>=4.28.0`.') |
|
|
|
response_queue = queue.Queue(maxsize=20) |
|
|
|
class ChatStreamer(BaseStreamer): |
|
|
|
def __init__(self, tokenizer) -> None: |
|
super().__init__() |
|
self.tokenizer = tokenizer |
|
self.queue = response_queue |
|
self.query = query |
|
self.history = history |
|
self.response = '' |
|
self.received_inputs = False |
|
self.queue.put( |
|
(self.response, history + [(self.query, self.response)])) |
|
|
|
def put(self, value): |
|
if len(value.shape) > 1 and value.shape[0] > 1: |
|
raise ValueError('ChatStreamer only supports batch size 1') |
|
elif len(value.shape) > 1: |
|
value = value[0] |
|
|
|
if not self.received_inputs: |
|
|
|
self.received_inputs = True |
|
return |
|
|
|
token = self.tokenizer.decode([value[-1]], |
|
skip_special_tokens=True) |
|
if token.strip() != '[UNUSED_TOKEN_145]': |
|
self.response = self.response + token |
|
history = self.history + [(self.query, self.response)] |
|
self.queue.put((self.response, history)) |
|
|
|
def end(self): |
|
self.queue.put(None) |
|
|
|
def stream_producer(): |
|
return self.chat( |
|
tokenizer=tokenizer, |
|
query=query, |
|
streamer=ChatStreamer(tokenizer=tokenizer), |
|
history=history, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
**kwargs, |
|
) |
|
|
|
def consumer(): |
|
producer = threading.Thread(target=stream_producer) |
|
producer.start() |
|
while True: |
|
res = response_queue.get() |
|
if res is None: |
|
return |
|
yield res |
|
|
|
return consumer() |
|
|