dmargutierrez commited on
Commit
6f55aad
1 Parent(s): 1d6621b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - lextreme
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: distilroberta-base-mapa_coarse-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: lextreme
20
+ type: lextreme
21
+ config: mapa_coarse
22
+ split: test
23
+ args: mapa_coarse
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.7440758293838863
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.5805042016806723
31
+ - name: F1
32
+ type: f1
33
+ value: 0.652190332326284
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9871584939520047
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # distilroberta-base-mapa_coarse-ner
43
+
44
+ This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the lextreme dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.1020
47
+ - Precision: 0.7441
48
+ - Recall: 0.5805
49
+ - F1: 0.6522
50
+ - Accuracy: 0.9872
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 16
71
+ - eval_batch_size: 16
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 15
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0343 | 1.0 | 1739 | 0.0694 | 0.6342 | 0.5205 | 0.5718 | 0.9841 |
82
+ | 0.0263 | 2.0 | 3478 | 0.0705 | 0.7961 | 0.5235 | 0.6317 | 0.9865 |
83
+ | 0.0183 | 3.0 | 5217 | 0.0670 | 0.7417 | 0.5313 | 0.6191 | 0.9864 |
84
+ | 0.015 | 4.0 | 6956 | 0.0632 | 0.7237 | 0.5850 | 0.6470 | 0.9869 |
85
+ | 0.0137 | 5.0 | 8695 | 0.0663 | 0.7311 | 0.6064 | 0.6629 | 0.9872 |
86
+ | 0.011 | 6.0 | 10434 | 0.0703 | 0.7163 | 0.5877 | 0.6457 | 0.9868 |
87
+ | 0.0096 | 7.0 | 12173 | 0.0799 | 0.7511 | 0.5676 | 0.6466 | 0.9871 |
88
+ | 0.0071 | 8.0 | 13912 | 0.0770 | 0.7386 | 0.5640 | 0.6396 | 0.9868 |
89
+ | 0.0068 | 9.0 | 15651 | 0.0827 | 0.7285 | 0.5674 | 0.6379 | 0.9868 |
90
+ | 0.0057 | 10.0 | 17390 | 0.0897 | 0.7611 | 0.5719 | 0.6531 | 0.9872 |
91
+ | 0.0053 | 11.0 | 19129 | 0.0940 | 0.7614 | 0.5627 | 0.6471 | 0.9871 |
92
+ | 0.004 | 12.0 | 20868 | 0.0874 | 0.7184 | 0.6084 | 0.6588 | 0.9873 |
93
+ | 0.0035 | 13.0 | 22607 | 0.0986 | 0.7513 | 0.5766 | 0.6525 | 0.9872 |
94
+ | 0.003 | 14.0 | 24346 | 0.1012 | 0.7396 | 0.5805 | 0.6505 | 0.9871 |
95
+ | 0.0026 | 15.0 | 26085 | 0.1020 | 0.7441 | 0.5805 | 0.6522 | 0.9872 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.26.0
101
+ - Pytorch 1.13.1+cu117
102
+ - Datasets 2.9.0
103
+ - Tokenizers 0.13.2