File size: 3,082 Bytes
7511c1d 284fcaa 7511c1d 00e8ac3 7511c1d 284fcaa 7511c1d 284fcaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: cc-by-nc-4.0
tags:
- trl
- dpo
- generated_from_trainer
base_model: HuggingFaceTB/SmolLM-360M-Instruct
model-index:
- name: SmolLM-1.7B-Instruct-dpo-16k
results: []
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SmolLM-1.7B-Instruct-dpo-16k
This model is a fine-tuned version of [HuggingFaceTB/SmolLM-360M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-360M-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8854
- Rewards/chosen: 0.0056
- Rewards/rejected: 0.3516
- Rewards/accuracies: 0.0326
- Rewards/margins: -0.3460
- Logps/rejected: -470.7809
- Logps/chosen: -546.0043
- Logits/rejected: 0.3165
- Logits/chosen: 0.6158
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:-----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5228 | 0.9999 | 3368 | 0.8697 | 0.0208 | 0.3405 | 0.0348 | -0.3197 | -470.8920 | -545.8519 | 0.3270 | 0.6295 |
| 0.4508 | 2.0 | 6737 | 0.8870 | 0.0130 | 0.3621 | 0.0228 | -0.3491 | -470.6755 | -545.9296 | 0.2662 | 0.5778 |
| 0.4451 | 2.9999 | 10105 | 0.8871 | 0.0057 | 0.3546 | 0.0337 | -0.3489 | -470.7502 | -546.0029 | 0.2855 | 0.5938 |
| 0.4447 | 4.0 | 13474 | 0.8869 | 0.0098 | 0.3588 | 0.0196 | -0.3490 | -470.7085 | -545.9620 | 0.3198 | 0.6222 |
| 0.4446 | 4.9999 | 16842 | 0.8870 | 0.0065 | 0.3551 | 0.0391 | -0.3486 | -470.7452 | -545.9945 | 0.3097 | 0.6124 |
| 0.4448 | 5.9991 | 20208 | 0.8854 | 0.0056 | 0.3516 | 0.0326 | -0.3460 | -470.7809 | -546.0043 | 0.3165 | 0.6158 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.0
- Datasets 2.19.1
- Tokenizers 0.19.1 |