--- license: cc-by-nc-4.0 tags: - trl - dpo - generated_from_trainer base_model: HuggingFaceTB/SmolLM-360M-Instruct model-index: - name: SmolLM-360M-Instruct-dpo-16k results: [] language: - en --- # SmolLM-360M-Instruct-dpo-16k This model is a fine-tuned version of [HuggingFaceTB/SmolLM-360M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-360M-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8873 - Rewards/chosen: 0.0047 - Rewards/rejected: 0.3539 - Rewards/accuracies: 0.0326 - Rewards/margins: -0.3493 - Logps/rejected: -470.7575 - Logps/chosen: -546.0133 - Logits/rejected: 0.3014 - Logits/chosen: 0.6045 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:-----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5225 | 0.9999 | 3368 | 0.8679 | 0.0092 | 0.3258 | 0.0337 | -0.3166 | -471.0385 | -545.9679 | 0.3212 | 0.6250 | | 0.4511 | 2.0 | 6737 | 0.8863 | 0.0171 | 0.3649 | 0.0283 | -0.3477 | -470.6477 | -545.8885 | 0.2889 | 0.5939 | | 0.4453 | 2.9999 | 10105 | 0.8880 | 0.0006 | 0.3516 | 0.0304 | -0.3510 | -470.7807 | -546.0537 | 0.3259 | 0.6291 | | 0.4439 | 4.0 | 13474 | 0.8894 | 0.0067 | 0.3598 | 0.0228 | -0.3531 | -470.6990 | -545.9932 | 0.2699 | 0.5815 | | 0.4441 | 4.9999 | 16842 | 0.8881 | 0.0058 | 0.3569 | 0.0293 | -0.3511 | -470.7278 | -546.0020 | 0.2999 | 0.6028 | | 0.4442 | 5.9991 | 20208 | 0.8873 | 0.0047 | 0.3539 | 0.0326 | -0.3493 | -470.7575 | -546.0133 | 0.3014 | 0.6045 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.2.0 - Datasets 2.19.1 - Tokenizers 0.19.1