File size: 2,625 Bytes
a1ef4fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: HuggingFaceTB/SmolLM-1.7B-Instruct
datasets:
- generator
model-index:
- name: SmolLM_1_7B_Instruct_qlora_nf4_merged
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SmolLM_1_7B_Instruct_qlora_nf4_merged

This model is a fine-tuned version of [HuggingFaceTB/SmolLM-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instruct) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6129

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 2.088         | 0.9524  | 10   | 1.9222          |
| 1.8671        | 2.0     | 21   | 1.7931          |
| 1.7735        | 2.9524  | 31   | 1.7340          |
| 1.7236        | 4.0     | 42   | 1.6932          |
| 1.6739        | 4.9524  | 52   | 1.6680          |
| 1.652         | 6.0     | 63   | 1.6494          |
| 1.6354        | 6.9524  | 73   | 1.6379          |
| 1.6139        | 8.0     | 84   | 1.6288          |
| 1.5938        | 8.9524  | 94   | 1.6233          |
| 1.5828        | 10.0    | 105  | 1.6189          |
| 1.5722        | 10.9524 | 115  | 1.6164          |
| 1.5588        | 12.0    | 126  | 1.6149          |
| 1.5539        | 12.9524 | 136  | 1.6141          |
| 1.5506        | 14.0    | 147  | 1.6134          |
| 1.5437        | 14.9524 | 157  | 1.6132          |
| 1.5427        | 16.0    | 168  | 1.6130          |
| 1.5407        | 16.9524 | 178  | 1.6130          |
| 1.5386        | 18.0    | 189  | 1.6130          |
| 1.5373        | 18.9524 | 199  | 1.6130          |
| 1.5397        | 19.0476 | 200  | 1.6129          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.19.1