File size: 2,045 Bytes
12ff2ee 7acb07c 12ff2ee 75f1b0e 12ff2ee 7acb07c 12ff2ee 75f1b0e 12ff2ee 75f1b0e 12ff2ee 75f1b0e 12ff2ee 75f1b0e 12ff2ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: cc-by-nc-4.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: HuggingFaceTB/SmolLM-360M-Instruct
datasets:
- generator
model-index:
- name: SmolLM_360M_Instruct_qlora_nf4-plaba
results: []
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SmolLM_360M_Instruct_qlora_nf4-plaba
This model is a fine-tuned version of [HuggingFaceTB/SmolLM-360M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-360M-Instruct) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8521
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.8889 | 2 | 2.0708 |
| No log | 1.7778 | 4 | 2.0152 |
| No log | 2.6667 | 6 | 1.9361 |
| No log | 4.0 | 9 | 1.8851 |
| 1.9803 | 4.8889 | 11 | 1.8728 |
| 1.9803 | 5.7778 | 13 | 1.8640 |
| 1.9803 | 6.6667 | 15 | 1.8571 |
| 1.9803 | 8.0 | 18 | 1.8525 |
| 1.8574 | 8.8889 | 20 | 1.8521 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.19.1 |