File size: 2,522 Bytes
ae4ce30 80c8bf0 503f4be ae4ce30 503f4be ae4ce30 80c8bf0 503f4be ae4ce30 503f4be ae4ce30 503f4be 3b7f866 503f4be ae4ce30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
base_model: unsloth/Phi-3-mini-4k-instruct
datasets:
- b-mc2/sql-create-context
- Clinton/Text-to-sql-v1
- knowrohit07/know_sql
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- phi-3
- trl
---
This is a **unsloth/Phi-3-mini-4k-instruct** model, fine-tuned on **[b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context)**, **[Clinton/Text-to-sql-v1](https://huggingface.co/datasets/Clinton/Text-to-sql-v1)** and **[knowrohit07/know_sql](https://huggingface.co/datasets/knowrohit07/know_sql)**
dataset.
## Model Usage
Use the `unsloth` library to laod and run the model.
Install `unsloth` and other dependencies.
```python
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps xformers "trl<0.9.0" peft accelerate bitsandbytes torch
```
Use `FastLanguageModel` to download and laod the model from hf hub.
```python
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "dmedhi/Phi-3-mini-4k-instruct-text2SQL",
max_seq_length = 2048
dtype = None
load_in_4bit = True
)
FastLanguageModel.for_inference(model)
prompt = """Below is a question that describes a SQL function, paired with a table Context that provides SQL table context. Write an answer that fullfils the user query.
### Question:
{}
### Context:
{}
### Answer:
{}"""
inputs = tokenizer(
[
prompt.format(
"What is the latest year that has ferrari 166 fl as the winning constructor?",
"""CREATE TABLE table_name_7 (
year INTEGER,
winning_constructor VARCHAR
)""",
""
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
```
```bash
# ["<s> Below is a question that describes a SQL function, paired with a table Context that provides SQL table context. Write an answer that fullfils the user query.\n\n### Question:\nWhat is the latest year that has ferrari 166 fl as the winning constructor?\n\n### Context:\nCREATE TABLE table_name_7 (\n year INTEGER,\n winning_constructor VARCHAR\n)\n\n### Answer:\nTo find the latest year that Ferrari 166 FL was the winning constructor, you can use the following SQL query:\n\n```sql\nSELECT MAX(year)\nFROM table_name_7\nWHERE winning_constructor = 'Ferrari 166 FL';\n```\n"]
```
|