dmenini commited on
Commit
9456eb7
1 Parent(s): b361c45

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1957.59 +/- 114.55
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:805303b3856cc65abd46c756db619fd096cfe9b9da1856e98d7fb513f5ab9ab8
3
+ size 132882
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd269cc8700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd269cc8790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd269cc8820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd269cc88b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd269cc8940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd269cc89d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd269cc8a60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd269cc8af0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd269cc8b80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd269cc8c10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd269cc8ca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd269cc8d30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fd269d46bc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVJwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIDqrrG1NoIpckdrrB8bAfDg8D5T/A50B7U+S6eQLNWaNANXfyIAcqxl+Vj4/mB6x8iysoeIVygyRWkCbo2T4uFdWlHbwin2rSzUrlzlfxfFxYf5E7bI/9xBzbDwTkHCPUFzkKYm6WjeTKxc8zcLgFh+N4BrnvKrQeGhgvYjeGocskEFHljBbZer3nP5YltMQqCFY5+ihxcdH+DgUOwHGAolOtvF6Fc239uTskD5G0AqQX4qoQ5j/lZUIdtr3MLhyxX5ZUpntqlwbCXiWDDGrkm2FiqH9ZdlLKegEsUGZDekRSIIox5nF8BxphAZLx5PBzmNUIA58Qd9hrbKDuHkcOUkEGG0evARyGmtSwy7sTGOc4Lz0YC25H8E5qCiP6WQ7nJOdCgriC4Fm4ANOoVGMXbR0bDR2TWVRgNkfmK1SyvgcjnVIJSUOP3BHylLC7Z3SCNE5fHd073Ir9JqTBez0RiW0ER8sqBV/KEcbB2aFY52lzF9nl6x9lTLY0cctEOnjumVJVnp5gQUp4cKRiuxo4mZ1ZFjCj+BCRQWfJ2nFLDzEX2gnadqQJpZh+uMjg+xmX7RiZo++u0pQc/gHuQu4LZmkoP2MJUAiB51VHcn0dXPArA/v079/HHZqr/2ePpZKqxCRi327lycY0cOgWCar4DhmdoX9Ajj1hpSHbSELZKotP7ccUJ1s4MilYtFYKqMnm6MVB21gHUQbyPXPPR+3/pB62Hysb2KhMWH5PGODdcsGT4TNmTiSXl5K8JWlsN+PXwD9S7n9ZFsOa8fRgkyOOcqyT+bhXBS0ERlvpQhBtZCqQ+NH9RBaYrn0UxopgTZn0KS8d10+uZ07eAb6Ba4RMeayKceB/H6TOBAQuBAvjTi1Rt1a2aTgGIJicJfDSHvyqjMEsFcM9QJCzrh8xdeGsUAUdnyFNX6d25tqzti1k7aNgRyX2ZO6ziAEtZO4tVAU5QPKVLskQ2V4MlyTRfO8k8jU3uHuNFxXr3E/UlvvcWA4CE35CKO/MAbu+/3WzChuTWYApBhAagrRp07gXda2kRKbDq47kQNQGs3Q+xJyty1Sd0XOwC9qRzgHmLhbORFxUj/PcQqxF1nb2KMdKBfgj5kmN3B2PJAqfgmF3iF+WwIHYlPn2P0oyJtDsATv4GuTdxUOmp9zzM626ZP/PJi7O2LTvskpZpGsGyfk41Nk6Uy0B0gyXWUadvQbTtz0Go+3krZioITWUG/axhZrizuSRPg0JuV/jY6AeqA+Z4Mr7GIuFUdHZeydEPbl21U+yukDOvQ78w2McR/vbPkUTcFOQbOQWOsz5WtPz/YtJ+RG9+T/ZWpZJtBxC2uoFhnvgN01SwtzFdg9/TO1mJEqSMTG80m4ree1r+3/VaIqk7vlz1coZtIBQDqkA4rPLrq+sYSlrUKmvc1QBtyDmcPkGC129slGXNiGyA8Lq5q1PlAQ94RkAT4RNdqBzDm6ThJZ94+eekgfYh1mOUnnnnVOTIJVCEWLN/J/EII4FNHowag4Acvbcnd0jVMF5iaOWEIFJyhUsq/uOliG31X6fgNqbLqwFD4k/BF2hFUYmcS4RAjTNVJl2lEDYy53OpRhQr0Rwjzb8q+UGZa/4+j31uxgdrYifPZYNLQJ51k3VxG0DPJZPa51R1Sws4TVwjyriblFUdjyzkNhtuSqmGTMEQqVXGMT/Pc8SIy6+LK/cApCC5G4pzq614RsFoq+v4vmR3R0ALL0McmkgrEvcy1z6EJ9Ia9ALNEzxBUFAgddtHMwq2yeIhfWPmRmxd8i25SDJe/5/lROYdgM1V/S4OM7Ct8NT/Y7LAw32WsBDxH9k3Fv0QOj70F7PGMxjXBOEF66WQEpwxIJ1H/Cn6/nvvK7jJpp+wQmSUzgCdjgw7uhz9y8wHBZahDsignwCeO8FykykVnHgQfH4X6J0g2EYwvYeaURQk6BIBp7Zzsn5i1Vb9xbCxfXjDG5XRUGXVDs1qSqzOyAhocua9dvOKUKSinTS0O41hK+6IXg43vRTObMop5rgByRbH0jF+Bw0J8eae+BwiWlQR8hvDr/9J1Gp/5PWXrhGNMgIuF8jMgDOySevQCwYiUsZupZ+BKbRwsM367R5DjTRQqQbvAqdBlIheWMIyWVSAKQ1/me1SRRHSUM9qzutNeIaDVcZf6T51FRWe6LTsPM7dq+j8jXtEtXKrfHqoAGWFAuEVIGTxi87wtS5zR8nQuK3WFqtbbLjPkW3ck/QTkDkOFKxIeCXt7SEA2p3l/AKiOtQWoYGDpXKk1Jn8rwxd9RYXG11sKbfynWnl8qbp/D8LhSzKYt5VkLcq4Wh2HzdrxeYbSF97/whuBppvZ5Ro3xWBcRiySrgwCcjEzI2Uk4uGjH1TOzSAUw9/9S2ndtEKNGgDF5fzTr7PlD0+wud7/hBiAmvp6XHwzrSy1psrgCzP74OaHtn6M6iJwVZ++rh8uVkUuyEzOmSbPTZTHlH9jKQowbxbJejADo+rv/eWwPN4Rcg3yFLHDjijWa5aA5mdXYMFqGYYimXxAzROmOKjvsfBJnUyuvZ6SHO2nT/zLlTUCcrNP/Tl5+FwnI8pjWx5cBGlB4TIuo35nWsIXnNTORyGL+TCtpsnXn8wth3ZaTZ9MMU/VfqNS3YQawfkpRdPOhUT2lhOQh4SWddwbtqh1tCjRLqhsYY6ADG/j1DbSIMyh68O2wxYDgvnxiyC0nf7WlZYwffcvKyB0EGc5w/8chQioqqbiWKec60kcIf6gMhAnjdB/N9/PBtMWsThHreyfW5EthDsN2hHGNEE6hA8AywlzK6Rm7KD/Bu4Tz3Jie6vQ+UZ2UI6bepySAnrqaFG+d3p3OzXspWkRTU9VpVvM6Zj4SKf/31sPHrITWLy9LjP78nvmoQb7zMQgHTo67Vm9G/oft8zFE7lCVfbAtM5HJWR3iV9vWVqHBgi9eUdaciPQhrhQGcjsBSORO985G+bswTtVfalowA5r4vnIbKvHmhOjBaP+WBfedi9VV/2ckrZufEWyKpowWcwjPnLDuojT8nr2uGLTLaQlGTd199tncRXf1yeqYqRb/+u37O3jp3/NaGziIkdLP22KcZ2ZUarbZOe3mb8i+6r9x6PZ/6loxBKk7HJ6gNIwQZ0+KZQoVb3cvl5Xg/AnH7e4oDhBVlvc48l/hLOkS9m0KOP3SASA0gqxVtvGMG2p8k+33LoBOK+x1f7B4HX+SeSlLNUkB3lyYP5RjKOgHyUxCtIx3zw4CfzskI0t2fqyAnC3Eb2y1owO4nswyoe/VuyRgRivDIMIgnhNpzws6V0xZohG6Qpql02ZgX2n50xndwYHhgNBWJRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": "RandomState(MT19937)"
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": 42,
66
+ "action_noise": null,
67
+ "start_time": 1679855133792088451,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": "tb_logs",
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAECdTD8Ifyq/zs5DvpOMIj/9p7W/JaVRPzsy7r7i0zC/1zEEPyPWaD8qYCY/+Ag9vtvBn758J3g+E6cDP6Q0wTxfn4G/czEBv1dSEL64Ezw/X44vv2cnKj+zcyw+SCRVvzDaLj8sVpE+XtgxP3DWPL9Di5C9fUqYvw0Smb8WMoI/CcYWv6cTaz9216O8NvmovoSWgb8c6/E+KANYP0fbCT+Hg2U9K8CcPd0yBj8e9F29zKKePq0Ucb9jDuu9U1CSPtUuyb4eVRa/9zQaPxvsKr8w2i4/LFaRPl7YMT9w1jy/Jai5PgcNub9gJQTA02G4P6CsEMCQzNg/cb8sv3QJrL7H0BW/v3u5P8JWPT99S+0+0RIKP6DDij/KD7c+EieAP9bt0773LADAaX6Iv6ZkJj9PiRA/h8FIPmfeFj/Zd3e/MNouPyxWkT5e2DE/cNY8v1lIkT95/QC/LwGsPJ8V4D9sIuS/wMKpPr9Z077ygJm/FajNPxyCjT97370+kXIuv12BfT73JzQ/QbkCP8f6CL4RVaW/Krc0vkP4wz42kHA/qVy2PUWvpT+EiIK/YqFsvzDaLj8sVpE+XtgxP3DWPL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACDAtg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAr64TvQAAAADhXu6/AAAAALPe9j0AAAAAKvXsPwAAAADMpIM8AAAAAFBv9T8AAAAAKKzSvQAAAACKxfK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGyBtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMoYhT0AAAAAo3nzvwAAAAB2yc49AAAAAF3o5D8AAAAAWX+UvQAAAAATHAFAAAAAADKz/j0AAAAAqGLbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALLRiDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDLxiq9AAAAAD84AcAAAAAAWUvhPQAAAADFsOo/AAAAAEQeprsAAAAAFQMAQAAAAAAqMNU9AAAAAMFm578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAb5zA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzv79vQAAAADuwOW/AAAAANxJvb0AAAAAxfH6PwAAAAD4b7Q7AAAAAP2H3D8AAAAAnEuRvQAAAACG6vu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ20M/B3zMCMAWyUTegDjAF0lEdAr79+yquKXXV9lChoBkdAm8Er9hqj8GgHTegDaAhHQK/CVO/tY0V1fZQoaAZHQIU5ckQf6oFoB03oA2gIR0CvwpujZcs2dX2UKGgGR0CHvtSOR1YAaAdN6ANoCEdAr8g4PoV2zXV9lChoBkdAnyHC08eS0WgHTegDaAhHQK/NHUH6dlN1fZQoaAZHQJ7LH6rNnoRoB03oA2gIR0Cvz+zlcQiBdX2UKGgGR0CfqBJemelLaAdN6ANoCEdAr9A0ep4r0HV9lChoBkdAn2bHT3IuG2gHTegDaAhHQK/VxIOpbUx1fZQoaAZHQJ3AH8k2P1doB03oA2gIR0Cv2p9YGMXKdX2UKGgGR0CcN6FiKBNFaAdN6ANoCEdAr919TUAks3V9lChoBkdAmn+XaakRBmgHTegDaAhHQK/dw1YyO7x1fZQoaAZHQJxozJMg2ZRoB03oA2gIR0Cv40+2E0zkdX2UKGgGR0CfVUyCFsYVaAdN6ANoCEdAr+gnPgNwznV9lChoBkdAnOW1A7gbZWgHTegDaAhHQK/rAj7hvR91fZQoaAZHQJ7AOZH/cWVoB03oA2gIR0Cv60i7CiyqdX2UKGgGR0Cc+LW4mTkiaAdN6ANoCEdAr/DCF/QSjHV9lChoBkdAmmPU8q4H5mgHTegDaAhHQK/1oa2nbZh1fZQoaAZHQJzqmHvc8DBoB03oA2gIR0Cv+HXuE25ydX2UKGgGR0Cc3wfShJyyaAdN6ANoCEdAr/i8js2NvXV9lChoBkdAmqGYIv8IiWgHTegDaAhHQK/+XYODrZ91fZQoaAZHQJyA8nkT6BRoB03oA2gIR0CwAZqHwgDBdX2UKGgGR0CadpfUnXumaAdN6ANoCEdAsAMFBJI1+HV9lChoBkdAm3YfcBU70WgHTegDaAhHQLADKTefqX51fZQoaAZHQJhVvru6VdJoB03oA2gIR0CwBgX/95yEdX2UKGgGR0CaUBk2P1cuaAdN6ANoCEdAsAiGX0Gu93V9lChoBkdAnaXkKzAvc2gHTegDaAhHQLAJ+XHzYmN1fZQoaAZHQJhvUmqo60ZoB03oA2gIR0CwCiCgkC3gdX2UKGgGR0CbaZ30f5k9aAdN6ANoCEdAsA0Dd56dD3V9lChoBkdAfjB2Cdz4lGgHTegDaAhHQLAPgEQoTf11fZQoaAZHQJY5dxLkCFNoB03oA2gIR0CwEOx2OhkBdX2UKGgGR0CVzkAFgUlBaAdN6ANoCEdAsBEQa99MK3V9lChoBkdAlz6cZUDMeWgHTegDaAhHQLAT2VgQYk51fZQoaAZHQJhXZuWKMvRoB03oA2gIR0CwFktnoPkJdX2UKGgGR0CZdllCCz1LaAdN6ANoCEdAsBe1AKOT7nV9lChoBkdAl421gx8D0WgHTegDaAhHQLAX1xptaZB1fZQoaAZHQJuvA7bL2YhoB03oA2gIR0CwGqSBGx2TdX2UKGgGR0CWFmaVlf7aaAdN6ANoCEdAsB0bMfRu0nV9lChoBkdAmmcTLns9jmgHTegDaAhHQLAeh3yZrpJ1fZQoaAZHQJt8CUSqU/xoB03oA2gIR0CwHrDd56dEdX2UKGgGR0CYUH8s+V1PaAdN6ANoCEdAsCGHo+wC83V9lChoBkdAnBhA+2VmjGgHTegDaAhHQLAkDRV6u4h1fZQoaAZHQJZdpaJQ+EBoB03oA2gIR0CwJYGUGFBZdX2UKGgGR0CYd5sS00FbaAdN6ANoCEdAsCWl8UmD2HV9lChoBkdAmFJfqTr3TWgHTegDaAhHQLAoewsoUi91fZQoaAZHQJpdOEeyRjloB03oA2gIR0CwKvrzXjEOdX2UKGgGR0CartryDqW1aAdN6ANoCEdAsCxuasp5NXV9lChoBkdAmZRnFo+OfmgHTegDaAhHQLAskjp9qlB1fZQoaAZHQJpjTbi6xxFoB03oA2gIR0CwL1RRhttRdX2UKGgGR0CdAVXvH93saAdN6ANoCEdAsDHH7O3UhHV9lChoBkdAnQ2hAbADaGgHTegDaAhHQLAzM580DU51fZQoaAZHQJ0o0EhaC+VoB03oA2gIR0CwM1YUi6g/dX2UKGgGR0CXwMYTj/+9aAdN6ANoCEdAsDYe9Jz1b3V9lChoBkdAm6jfV7Qb/GgHTegDaAhHQLA4lHgP3BZ1fZQoaAZHQJ4gmnqFAVxoB03oA2gIR0CwOgDKLbYcdX2UKGgGR0CdBa4ACGN8aAdN6ANoCEdAsDok/cFhX3V9lChoBkdAmfutF8XvY2gHTegDaAhHQLA86o9LYf51fZQoaAZHQJgogWuX/o9oB03oA2gIR0CwP03XRPXTdX2UKGgGR0CWF3lDF6zFaAdN6ANoCEdAsEC2DcuannV9lChoBkdAmheZGax5cGgHTegDaAhHQLBA2CmdiDx1fZQoaAZHQJSzaH6/IsBoB03oA2gIR0CwQ58SwnpjdX2UKGgGR0CTg1lf7aZhaAdN6ANoCEdAsEYHltCRfXV9lChoBkdAlex6ySmqHWgHTegDaAhHQLBHabWEsat1fZQoaAZHQJZ+47wKBupoB03oA2gIR0CwR45/LDAKdX2UKGgGR0CVZBGiHqNZaAdN6ANoCEdAsEpP/hl183V9lChoBkdAl7t1sHjZMGgHTegDaAhHQLBMvJqZc9p1fZQoaAZHQJjq0YdhiLFoB03oA2gIR0CwTicJMQEqdX2UKGgGR0CXh2Y5ksjFaAdN6ANoCEdAsE5KlP8AJnV9lChoBkdAk5mZZOi35WgHTegDaAhHQLBRDNfPX051fZQoaAZHQJe7k7bL2YhoB03oA2gIR0CwU4PLcKw7dX2UKGgGR0CXJ5rcj7hvaAdN6ANoCEdAsFTrPt2LYXV9lChoBkdAlzXfSUkfLmgHTegDaAhHQLBVDhCdBjZ1fZQoaAZHQJazl6D5CWxoB03oA2gIR0CwV8978ejmdX2UKGgGR0CUDFTuOS4faAdN6ANoCEdAsFpCNOuaF3V9lChoBkdAli9bxNIsiGgHTegDaAhHQLBbq7Jnxrl1fZQoaAZHQJfjOUdJaq1oB03oA2gIR0CwW86dYnv2dX2UKGgGR0CV7pPRArxzaAdN6ANoCEdAsF6Lg/C66XV9lChoBkdAmhtPJzT4L2gHTegDaAhHQLBg89ZA6dV1fZQoaAZHQJWz1OEdvKloB03oA2gIR0CwYmAnc+JQdX2UKGgGR0CYTDFw1ivxaAdN6ANoCEdAsGKDWFvhqHV9lChoBkdAmDzo3WFvh2gHTegDaAhHQLBlREQ5FPV1fZQoaAZHQJitgjUutfZoB03oA2gIR0CwZ7Epd8iOdX2UKGgGR0CZCaqVhTfjaAdN6ANoCEdAsGkbsWweNnV9lChoBkdAmTKacEvCdmgHTegDaAhHQLBpPuUliSd1fZQoaAZHQJfqcq+ajN9oB03oA2gIR0CwbAMEvCdjdX2UKGgGR0CYI5BVMmF8aAdN6ANoCEdAsG5nzJ6ppHV9lChoBkdAlweedPLxJGgHTegDaAhHQLBvzgUlAu91fZQoaAZHQJuPqeXiR4hoB03oA2gIR0Cwb/Dz7MxHdX2UKGgGR0CaM+15jYqYaAdN6ANoCEdAsHKwRDkU9XV9lChoBkdAmt+VKkEcKmgHTegDaAhHQLB1FdYGMXJ1fZQoaAZHQJo+IVymygRoB03oA2gIR0Cwdn/1tfoidX2UKGgGR0CagLaJAMUiaAdN6ANoCEdAsHah8gIQe3V9lChoBkdAnA7UNayKN2gHTegDaAhHQLB5bFuejEh1fZQoaAZHQJw2xVbRne1oB03oA2gIR0Cwe9Sp3os7dX2UKGgGR0Cc9nWcBltkaAdN6ANoCEdAsH09FtsN2HV9lChoBkdAm8VbPUrkKmgHTegDaAhHQLB9X8gIQe51fZQoaAZHQJ076SjgydpoB03oA2gIR0CwgBtLHuJDdX2UKGgGR0CbpXhTwUg0aAdN6ANoCEdAsIKFY3eenXV9lChoBkdAnpPtbs4T9WgHTegDaAhHQLCD6/pMYdh1fZQoaAZHQJ3sY43m3fBoB03oA2gIR0CwhA5OzposdX2UKGgGR0Ca6x6Zpi7TaAdN6ANoCEdAsIbHvSc9XHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 1.0,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c05c5df373753305a04a2b1b9e6f8615ddc15e0647f19a56deb0f5f487cd69d4
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb6fbb774c94558a478546fe9d1c4cc1f95e63da5b5ef8095720e1aa1a3e18c1
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd269cc8700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd269cc8790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd269cc8820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd269cc88b0>", "_build": "<function ActorCriticPolicy._build at 0x7fd269cc8940>", "forward": "<function ActorCriticPolicy.forward at 0x7fd269cc89d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd269cc8a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd269cc8af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd269cc8b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd269cc8c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd269cc8ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd269cc8d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd269d46bc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIDqrrG1NoIpckdrrB8bAfDg8D5T/A50B7U+S6eQLNWaNANXfyIAcqxl+Vj4/mB6x8iysoeIVygyRWkCbo2T4uFdWlHbwin2rSzUrlzlfxfFxYf5E7bI/9xBzbDwTkHCPUFzkKYm6WjeTKxc8zcLgFh+N4BrnvKrQeGhgvYjeGocskEFHljBbZer3nP5YltMQqCFY5+ihxcdH+DgUOwHGAolOtvF6Fc239uTskD5G0AqQX4qoQ5j/lZUIdtr3MLhyxX5ZUpntqlwbCXiWDDGrkm2FiqH9ZdlLKegEsUGZDekRSIIox5nF8BxphAZLx5PBzmNUIA58Qd9hrbKDuHkcOUkEGG0evARyGmtSwy7sTGOc4Lz0YC25H8E5qCiP6WQ7nJOdCgriC4Fm4ANOoVGMXbR0bDR2TWVRgNkfmK1SyvgcjnVIJSUOP3BHylLC7Z3SCNE5fHd073Ir9JqTBez0RiW0ER8sqBV/KEcbB2aFY52lzF9nl6x9lTLY0cctEOnjumVJVnp5gQUp4cKRiuxo4mZ1ZFjCj+BCRQWfJ2nFLDzEX2gnadqQJpZh+uMjg+xmX7RiZo++u0pQc/gHuQu4LZmkoP2MJUAiB51VHcn0dXPArA/v079/HHZqr/2ePpZKqxCRi327lycY0cOgWCar4DhmdoX9Ajj1hpSHbSELZKotP7ccUJ1s4MilYtFYKqMnm6MVB21gHUQbyPXPPR+3/pB62Hysb2KhMWH5PGODdcsGT4TNmTiSXl5K8JWlsN+PXwD9S7n9ZFsOa8fRgkyOOcqyT+bhXBS0ERlvpQhBtZCqQ+NH9RBaYrn0UxopgTZn0KS8d10+uZ07eAb6Ba4RMeayKceB/H6TOBAQuBAvjTi1Rt1a2aTgGIJicJfDSHvyqjMEsFcM9QJCzrh8xdeGsUAUdnyFNX6d25tqzti1k7aNgRyX2ZO6ziAEtZO4tVAU5QPKVLskQ2V4MlyTRfO8k8jU3uHuNFxXr3E/UlvvcWA4CE35CKO/MAbu+/3WzChuTWYApBhAagrRp07gXda2kRKbDq47kQNQGs3Q+xJyty1Sd0XOwC9qRzgHmLhbORFxUj/PcQqxF1nb2KMdKBfgj5kmN3B2PJAqfgmF3iF+WwIHYlPn2P0oyJtDsATv4GuTdxUOmp9zzM626ZP/PJi7O2LTvskpZpGsGyfk41Nk6Uy0B0gyXWUadvQbTtz0Go+3krZioITWUG/axhZrizuSRPg0JuV/jY6AeqA+Z4Mr7GIuFUdHZeydEPbl21U+yukDOvQ78w2McR/vbPkUTcFOQbOQWOsz5WtPz/YtJ+RG9+T/ZWpZJtBxC2uoFhnvgN01SwtzFdg9/TO1mJEqSMTG80m4ree1r+3/VaIqk7vlz1coZtIBQDqkA4rPLrq+sYSlrUKmvc1QBtyDmcPkGC129slGXNiGyA8Lq5q1PlAQ94RkAT4RNdqBzDm6ThJZ94+eekgfYh1mOUnnnnVOTIJVCEWLN/J/EII4FNHowag4Acvbcnd0jVMF5iaOWEIFJyhUsq/uOliG31X6fgNqbLqwFD4k/BF2hFUYmcS4RAjTNVJl2lEDYy53OpRhQr0Rwjzb8q+UGZa/4+j31uxgdrYifPZYNLQJ51k3VxG0DPJZPa51R1Sws4TVwjyriblFUdjyzkNhtuSqmGTMEQqVXGMT/Pc8SIy6+LK/cApCC5G4pzq614RsFoq+v4vmR3R0ALL0McmkgrEvcy1z6EJ9Ia9ALNEzxBUFAgddtHMwq2yeIhfWPmRmxd8i25SDJe/5/lROYdgM1V/S4OM7Ct8NT/Y7LAw32WsBDxH9k3Fv0QOj70F7PGMxjXBOEF66WQEpwxIJ1H/Cn6/nvvK7jJpp+wQmSUzgCdjgw7uhz9y8wHBZahDsignwCeO8FykykVnHgQfH4X6J0g2EYwvYeaURQk6BIBp7Zzsn5i1Vb9xbCxfXjDG5XRUGXVDs1qSqzOyAhocua9dvOKUKSinTS0O41hK+6IXg43vRTObMop5rgByRbH0jF+Bw0J8eae+BwiWlQR8hvDr/9J1Gp/5PWXrhGNMgIuF8jMgDOySevQCwYiUsZupZ+BKbRwsM367R5DjTRQqQbvAqdBlIheWMIyWVSAKQ1/me1SRRHSUM9qzutNeIaDVcZf6T51FRWe6LTsPM7dq+j8jXtEtXKrfHqoAGWFAuEVIGTxi87wtS5zR8nQuK3WFqtbbLjPkW3ck/QTkDkOFKxIeCXt7SEA2p3l/AKiOtQWoYGDpXKk1Jn8rwxd9RYXG11sKbfynWnl8qbp/D8LhSzKYt5VkLcq4Wh2HzdrxeYbSF97/whuBppvZ5Ro3xWBcRiySrgwCcjEzI2Uk4uGjH1TOzSAUw9/9S2ndtEKNGgDF5fzTr7PlD0+wud7/hBiAmvp6XHwzrSy1psrgCzP74OaHtn6M6iJwVZ++rh8uVkUuyEzOmSbPTZTHlH9jKQowbxbJejADo+rv/eWwPN4Rcg3yFLHDjijWa5aA5mdXYMFqGYYimXxAzROmOKjvsfBJnUyuvZ6SHO2nT/zLlTUCcrNP/Tl5+FwnI8pjWx5cBGlB4TIuo35nWsIXnNTORyGL+TCtpsnXn8wth3ZaTZ9MMU/VfqNS3YQawfkpRdPOhUT2lhOQh4SWddwbtqh1tCjRLqhsYY6ADG/j1DbSIMyh68O2wxYDgvnxiyC0nf7WlZYwffcvKyB0EGc5w/8chQioqqbiWKec60kcIf6gMhAnjdB/N9/PBtMWsThHreyfW5EthDsN2hHGNEE6hA8AywlzK6Rm7KD/Bu4Tz3Jie6vQ+UZ2UI6bepySAnrqaFG+d3p3OzXspWkRTU9VpVvM6Zj4SKf/31sPHrITWLy9LjP78nvmoQb7zMQgHTo67Vm9G/oft8zFE7lCVfbAtM5HJWR3iV9vWVqHBgi9eUdaciPQhrhQGcjsBSORO985G+bswTtVfalowA5r4vnIbKvHmhOjBaP+WBfedi9VV/2ckrZufEWyKpowWcwjPnLDuojT8nr2uGLTLaQlGTd199tncRXf1yeqYqRb/+u37O3jp3/NaGziIkdLP22KcZ2ZUarbZOe3mb8i+6r9x6PZ/6loxBKk7HJ6gNIwQZ0+KZQoVb3cvl5Xg/AnH7e4oDhBVlvc48l/hLOkS9m0KOP3SASA0gqxVtvGMG2p8k+33LoBOK+x1f7B4HX+SeSlLNUkB3lyYP5RjKOgHyUxCtIx3zw4CfzskI0t2fqyAnC3Eb2y1owO4nswyoe/VuyRgRivDIMIgnhNpzws6V0xZohG6Qpql02ZgX2n50xndwYHhgNBWJRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": 42, "action_noise": null, "start_time": 1679855133792088451, "learning_rate": 0.00096, "tensorboard_log": "tb_logs", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAECdTD8Ifyq/zs5DvpOMIj/9p7W/JaVRPzsy7r7i0zC/1zEEPyPWaD8qYCY/+Ag9vtvBn758J3g+E6cDP6Q0wTxfn4G/czEBv1dSEL64Ezw/X44vv2cnKj+zcyw+SCRVvzDaLj8sVpE+XtgxP3DWPL9Di5C9fUqYvw0Smb8WMoI/CcYWv6cTaz9216O8NvmovoSWgb8c6/E+KANYP0fbCT+Hg2U9K8CcPd0yBj8e9F29zKKePq0Ucb9jDuu9U1CSPtUuyb4eVRa/9zQaPxvsKr8w2i4/LFaRPl7YMT9w1jy/Jai5PgcNub9gJQTA02G4P6CsEMCQzNg/cb8sv3QJrL7H0BW/v3u5P8JWPT99S+0+0RIKP6DDij/KD7c+EieAP9bt0773LADAaX6Iv6ZkJj9PiRA/h8FIPmfeFj/Zd3e/MNouPyxWkT5e2DE/cNY8v1lIkT95/QC/LwGsPJ8V4D9sIuS/wMKpPr9Z077ygJm/FajNPxyCjT97370+kXIuv12BfT73JzQ/QbkCP8f6CL4RVaW/Krc0vkP4wz42kHA/qVy2PUWvpT+EiIK/YqFsvzDaLj8sVpE+XtgxP3DWPL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACDAtg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAr64TvQAAAADhXu6/AAAAALPe9j0AAAAAKvXsPwAAAADMpIM8AAAAAFBv9T8AAAAAKKzSvQAAAACKxfK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGyBtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMoYhT0AAAAAo3nzvwAAAAB2yc49AAAAAF3o5D8AAAAAWX+UvQAAAAATHAFAAAAAADKz/j0AAAAAqGLbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALLRiDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDLxiq9AAAAAD84AcAAAAAAWUvhPQAAAADFsOo/AAAAAEQeprsAAAAAFQMAQAAAAAAqMNU9AAAAAMFm578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAb5zA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzv79vQAAAADuwOW/AAAAANxJvb0AAAAAxfH6PwAAAAD4b7Q7AAAAAP2H3D8AAAAAnEuRvQAAAACG6vu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ20M/B3zMCMAWyUTegDjAF0lEdAr79+yquKXXV9lChoBkdAm8Er9hqj8GgHTegDaAhHQK/CVO/tY0V1fZQoaAZHQIU5ckQf6oFoB03oA2gIR0CvwpujZcs2dX2UKGgGR0CHvtSOR1YAaAdN6ANoCEdAr8g4PoV2zXV9lChoBkdAnyHC08eS0WgHTegDaAhHQK/NHUH6dlN1fZQoaAZHQJ7LH6rNnoRoB03oA2gIR0Cvz+zlcQiBdX2UKGgGR0CfqBJemelLaAdN6ANoCEdAr9A0ep4r0HV9lChoBkdAn2bHT3IuG2gHTegDaAhHQK/VxIOpbUx1fZQoaAZHQJ3AH8k2P1doB03oA2gIR0Cv2p9YGMXKdX2UKGgGR0CcN6FiKBNFaAdN6ANoCEdAr919TUAks3V9lChoBkdAmn+XaakRBmgHTegDaAhHQK/dw1YyO7x1fZQoaAZHQJxozJMg2ZRoB03oA2gIR0Cv40+2E0zkdX2UKGgGR0CfVUyCFsYVaAdN6ANoCEdAr+gnPgNwznV9lChoBkdAnOW1A7gbZWgHTegDaAhHQK/rAj7hvR91fZQoaAZHQJ7AOZH/cWVoB03oA2gIR0Cv60i7CiyqdX2UKGgGR0Cc+LW4mTkiaAdN6ANoCEdAr/DCF/QSjHV9lChoBkdAmmPU8q4H5mgHTegDaAhHQK/1oa2nbZh1fZQoaAZHQJzqmHvc8DBoB03oA2gIR0Cv+HXuE25ydX2UKGgGR0Cc3wfShJyyaAdN6ANoCEdAr/i8js2NvXV9lChoBkdAmqGYIv8IiWgHTegDaAhHQK/+XYODrZ91fZQoaAZHQJyA8nkT6BRoB03oA2gIR0CwAZqHwgDBdX2UKGgGR0CadpfUnXumaAdN6ANoCEdAsAMFBJI1+HV9lChoBkdAm3YfcBU70WgHTegDaAhHQLADKTefqX51fZQoaAZHQJhVvru6VdJoB03oA2gIR0CwBgX/95yEdX2UKGgGR0CaUBk2P1cuaAdN6ANoCEdAsAiGX0Gu93V9lChoBkdAnaXkKzAvc2gHTegDaAhHQLAJ+XHzYmN1fZQoaAZHQJhvUmqo60ZoB03oA2gIR0CwCiCgkC3gdX2UKGgGR0CbaZ30f5k9aAdN6ANoCEdAsA0Dd56dD3V9lChoBkdAfjB2Cdz4lGgHTegDaAhHQLAPgEQoTf11fZQoaAZHQJY5dxLkCFNoB03oA2gIR0CwEOx2OhkBdX2UKGgGR0CVzkAFgUlBaAdN6ANoCEdAsBEQa99MK3V9lChoBkdAlz6cZUDMeWgHTegDaAhHQLAT2VgQYk51fZQoaAZHQJhXZuWKMvRoB03oA2gIR0CwFktnoPkJdX2UKGgGR0CZdllCCz1LaAdN6ANoCEdAsBe1AKOT7nV9lChoBkdAl421gx8D0WgHTegDaAhHQLAX1xptaZB1fZQoaAZHQJuvA7bL2YhoB03oA2gIR0CwGqSBGx2TdX2UKGgGR0CWFmaVlf7aaAdN6ANoCEdAsB0bMfRu0nV9lChoBkdAmmcTLns9jmgHTegDaAhHQLAeh3yZrpJ1fZQoaAZHQJt8CUSqU/xoB03oA2gIR0CwHrDd56dEdX2UKGgGR0CYUH8s+V1PaAdN6ANoCEdAsCGHo+wC83V9lChoBkdAnBhA+2VmjGgHTegDaAhHQLAkDRV6u4h1fZQoaAZHQJZdpaJQ+EBoB03oA2gIR0CwJYGUGFBZdX2UKGgGR0CYd5sS00FbaAdN6ANoCEdAsCWl8UmD2HV9lChoBkdAmFJfqTr3TWgHTegDaAhHQLAoewsoUi91fZQoaAZHQJpdOEeyRjloB03oA2gIR0CwKvrzXjEOdX2UKGgGR0CartryDqW1aAdN6ANoCEdAsCxuasp5NXV9lChoBkdAmZRnFo+OfmgHTegDaAhHQLAskjp9qlB1fZQoaAZHQJpjTbi6xxFoB03oA2gIR0CwL1RRhttRdX2UKGgGR0CdAVXvH93saAdN6ANoCEdAsDHH7O3UhHV9lChoBkdAnQ2hAbADaGgHTegDaAhHQLAzM580DU51fZQoaAZHQJ0o0EhaC+VoB03oA2gIR0CwM1YUi6g/dX2UKGgGR0CXwMYTj/+9aAdN6ANoCEdAsDYe9Jz1b3V9lChoBkdAm6jfV7Qb/GgHTegDaAhHQLA4lHgP3BZ1fZQoaAZHQJ4gmnqFAVxoB03oA2gIR0CwOgDKLbYcdX2UKGgGR0CdBa4ACGN8aAdN6ANoCEdAsDok/cFhX3V9lChoBkdAmfutF8XvY2gHTegDaAhHQLA86o9LYf51fZQoaAZHQJgogWuX/o9oB03oA2gIR0CwP03XRPXTdX2UKGgGR0CWF3lDF6zFaAdN6ANoCEdAsEC2DcuannV9lChoBkdAmheZGax5cGgHTegDaAhHQLBA2CmdiDx1fZQoaAZHQJSzaH6/IsBoB03oA2gIR0CwQ58SwnpjdX2UKGgGR0CTg1lf7aZhaAdN6ANoCEdAsEYHltCRfXV9lChoBkdAlex6ySmqHWgHTegDaAhHQLBHabWEsat1fZQoaAZHQJZ+47wKBupoB03oA2gIR0CwR45/LDAKdX2UKGgGR0CVZBGiHqNZaAdN6ANoCEdAsEpP/hl183V9lChoBkdAl7t1sHjZMGgHTegDaAhHQLBMvJqZc9p1fZQoaAZHQJjq0YdhiLFoB03oA2gIR0CwTicJMQEqdX2UKGgGR0CXh2Y5ksjFaAdN6ANoCEdAsE5KlP8AJnV9lChoBkdAk5mZZOi35WgHTegDaAhHQLBRDNfPX051fZQoaAZHQJe7k7bL2YhoB03oA2gIR0CwU4PLcKw7dX2UKGgGR0CXJ5rcj7hvaAdN6ANoCEdAsFTrPt2LYXV9lChoBkdAlzXfSUkfLmgHTegDaAhHQLBVDhCdBjZ1fZQoaAZHQJazl6D5CWxoB03oA2gIR0CwV8978ejmdX2UKGgGR0CUDFTuOS4faAdN6ANoCEdAsFpCNOuaF3V9lChoBkdAli9bxNIsiGgHTegDaAhHQLBbq7Jnxrl1fZQoaAZHQJfjOUdJaq1oB03oA2gIR0CwW86dYnv2dX2UKGgGR0CV7pPRArxzaAdN6ANoCEdAsF6Lg/C66XV9lChoBkdAmhtPJzT4L2gHTegDaAhHQLBg89ZA6dV1fZQoaAZHQJWz1OEdvKloB03oA2gIR0CwYmAnc+JQdX2UKGgGR0CYTDFw1ivxaAdN6ANoCEdAsGKDWFvhqHV9lChoBkdAmDzo3WFvh2gHTegDaAhHQLBlREQ5FPV1fZQoaAZHQJitgjUutfZoB03oA2gIR0CwZ7Epd8iOdX2UKGgGR0CZCaqVhTfjaAdN6ANoCEdAsGkbsWweNnV9lChoBkdAmTKacEvCdmgHTegDaAhHQLBpPuUliSd1fZQoaAZHQJfqcq+ajN9oB03oA2gIR0CwbAMEvCdjdX2UKGgGR0CYI5BVMmF8aAdN6ANoCEdAsG5nzJ6ppHV9lChoBkdAlweedPLxJGgHTegDaAhHQLBvzgUlAu91fZQoaAZHQJuPqeXiR4hoB03oA2gIR0Cwb/Dz7MxHdX2UKGgGR0CaM+15jYqYaAdN6ANoCEdAsHKwRDkU9XV9lChoBkdAmt+VKkEcKmgHTegDaAhHQLB1FdYGMXJ1fZQoaAZHQJo+IVymygRoB03oA2gIR0Cwdn/1tfoidX2UKGgGR0CagLaJAMUiaAdN6ANoCEdAsHah8gIQe3V9lChoBkdAnA7UNayKN2gHTegDaAhHQLB5bFuejEh1fZQoaAZHQJw2xVbRne1oB03oA2gIR0Cwe9Sp3os7dX2UKGgGR0Cc9nWcBltkaAdN6ANoCEdAsH09FtsN2HV9lChoBkdAm8VbPUrkKmgHTegDaAhHQLB9X8gIQe51fZQoaAZHQJ076SjgydpoB03oA2gIR0CwgBtLHuJDdX2UKGgGR0CbpXhTwUg0aAdN6ANoCEdAsIKFY3eenXV9lChoBkdAnpPtbs4T9WgHTegDaAhHQLCD6/pMYdh1fZQoaAZHQJ3sY43m3fBoB03oA2gIR0CwhA5OzposdX2UKGgGR0Ca6x6Zpi7TaAdN6ANoCEdAsIbHvSc9XHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93cc8e84c6a95480de405d95ca7dd67ec399be6356c1a646c2876b6fa002c2e8
3
+ size 1264719
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1957.5895127048775, "std_reward": 114.5467249068033, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-26T19:28:36.720652"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5274914923968f1447019b2534db5e897b293908996451726d1b317a7a6968ef
3
+ size 2136