dmlls commited on
Commit
b6e4ba2
1 Parent(s): 9fce36f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +735 -2
README.md CHANGED
@@ -1,3 +1,736 @@
1
  ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: all-mpnet-base-v2-negation
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 72.6268656716418
18
+ - type: ap
19
+ value: 36.40585820220466
20
+ - type: f1
21
+ value: 67.06383995428979
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 85.11834999999999
33
+ - type: ap
34
+ value: 79.72843246428603
35
+ - type: f1
36
+ value: 85.08938287851875
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 37.788000000000004
48
+ - type: f1
49
+ value: 37.40475118737949
50
+ - task:
51
+ type: Clustering
52
+ dataset:
53
+ type: mteb/arxiv-clustering-p2p
54
+ name: MTEB ArxivClusteringP2P
55
+ config: default
56
+ split: test
57
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
58
+ metrics:
59
+ - type: v_measure
60
+ value: 45.73138953773995
61
+ - task:
62
+ type: Clustering
63
+ dataset:
64
+ type: mteb/arxiv-clustering-s2s
65
+ name: MTEB ArxivClusteringS2S
66
+ config: default
67
+ split: test
68
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
69
+ metrics:
70
+ - type: v_measure
71
+ value: 39.13609863309245
72
+ - task:
73
+ type: Reranking
74
+ dataset:
75
+ type: mteb/askubuntudupquestions-reranking
76
+ name: MTEB AskUbuntuDupQuestions
77
+ config: default
78
+ split: test
79
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
80
+ metrics:
81
+ - type: map
82
+ value: 65.56639026991134
83
+ - type: mrr
84
+ value: 77.8122938926263
85
+ - task:
86
+ type: STS
87
+ dataset:
88
+ type: mteb/biosses-sts
89
+ name: MTEB BIOSSES
90
+ config: default
91
+ split: test
92
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
93
+ metrics:
94
+ - type: cos_sim_pearson
95
+ value: 72.27098152643569
96
+ - type: cos_sim_spearman
97
+ value: 71.13475338373253
98
+ - type: euclidean_pearson
99
+ value: 70.48545151074218
100
+ - type: euclidean_spearman
101
+ value: 69.49917394727082
102
+ - type: manhattan_pearson
103
+ value: 69.2653740752147
104
+ - type: manhattan_spearman
105
+ value: 68.59192435931085
106
+ - task:
107
+ type: Classification
108
+ dataset:
109
+ type: mteb/banking77
110
+ name: MTEB Banking77Classification
111
+ config: default
112
+ split: test
113
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
114
+ metrics:
115
+ - type: accuracy
116
+ value: 84.7012987012987
117
+ - type: f1
118
+ value: 84.61766470772943
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: mteb/biorxiv-clustering-p2p
123
+ name: MTEB BiorxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
127
+ metrics:
128
+ - type: v_measure
129
+ value: 37.61314886948818
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/biorxiv-clustering-s2s
134
+ name: MTEB BiorxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
138
+ metrics:
139
+ - type: v_measure
140
+ value: 34.496442588205205
141
+ - task:
142
+ type: Classification
143
+ dataset:
144
+ type: mteb/emotion
145
+ name: MTEB EmotionClassification
146
+ config: default
147
+ split: test
148
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
149
+ metrics:
150
+ - type: accuracy
151
+ value: 45.63
152
+ - type: f1
153
+ value: 40.24119129248194
154
+ - task:
155
+ type: Classification
156
+ dataset:
157
+ type: mteb/imdb
158
+ name: MTEB ImdbClassification
159
+ config: default
160
+ split: test
161
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
162
+ metrics:
163
+ - type: accuracy
164
+ value: 74.73479999999999
165
+ - type: ap
166
+ value: 68.80435332319863
167
+ - type: f1
168
+ value: 74.66014345440416
169
+ - task:
170
+ type: Classification
171
+ dataset:
172
+ type: mteb/mtop_domain
173
+ name: MTEB MTOPDomainClassification (en)
174
+ config: en
175
+ split: test
176
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
177
+ metrics:
178
+ - type: accuracy
179
+ value: 93.06429548563612
180
+ - type: f1
181
+ value: 92.91686969560733
182
+ - task:
183
+ type: Classification
184
+ dataset:
185
+ type: mteb/mtop_intent
186
+ name: MTEB MTOPIntentClassification (en)
187
+ config: en
188
+ split: test
189
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
190
+ metrics:
191
+ - type: accuracy
192
+ value: 78.19197446420428
193
+ - type: f1
194
+ value: 61.50020940946492
195
+ - task:
196
+ type: Classification
197
+ dataset:
198
+ type: mteb/amazon_massive_intent
199
+ name: MTEB MassiveIntentClassification (en)
200
+ config: en
201
+ split: test
202
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
203
+ metrics:
204
+ - type: accuracy
205
+ value: 73.86684599865502
206
+ - type: f1
207
+ value: 72.11245795864379
208
+ - task:
209
+ type: Classification
210
+ dataset:
211
+ type: mteb/amazon_massive_scenario
212
+ name: MTEB MassiveScenarioClassification (en)
213
+ config: en
214
+ split: test
215
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
216
+ metrics:
217
+ - type: accuracy
218
+ value: 77.53866845998655
219
+ - type: f1
220
+ value: 77.51746806908895
221
+ - task:
222
+ type: Clustering
223
+ dataset:
224
+ type: mteb/medrxiv-clustering-p2p
225
+ name: MTEB MedrxivClusteringP2P
226
+ config: default
227
+ split: test
228
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
229
+ metrics:
230
+ - type: v_measure
231
+ value: 33.66744884855605
232
+ - task:
233
+ type: Clustering
234
+ dataset:
235
+ type: mteb/medrxiv-clustering-s2s
236
+ name: MTEB MedrxivClusteringS2S
237
+ config: default
238
+ split: test
239
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
240
+ metrics:
241
+ - type: v_measure
242
+ value: 31.951900966550262
243
+ - task:
244
+ type: Reranking
245
+ dataset:
246
+ type: mteb/mind_small
247
+ name: MTEB MindSmallReranking
248
+ config: default
249
+ split: test
250
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
251
+ metrics:
252
+ - type: map
253
+ value: 29.34485636178124
254
+ - type: mrr
255
+ value: 30.118035109577022
256
+ - task:
257
+ type: Clustering
258
+ dataset:
259
+ type: mteb/reddit-clustering
260
+ name: MTEB RedditClustering
261
+ config: default
262
+ split: test
263
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
264
+ metrics:
265
+ - type: v_measure
266
+ value: 47.14306531904168
267
+ - task:
268
+ type: Clustering
269
+ dataset:
270
+ type: mteb/reddit-clustering-p2p
271
+ name: MTEB RedditClusteringP2P
272
+ config: default
273
+ split: test
274
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
275
+ metrics:
276
+ - type: v_measure
277
+ value: 51.59878183893005
278
+ - task:
279
+ type: STS
280
+ dataset:
281
+ type: mteb/sickr-sts
282
+ name: MTEB SICK-R
283
+ config: default
284
+ split: test
285
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
286
+ metrics:
287
+ - type: cos_sim_pearson
288
+ value: 78.5530506834234
289
+ - type: cos_sim_spearman
290
+ value: 77.45787185404667
291
+ - type: euclidean_pearson
292
+ value: 76.37727601604011
293
+ - type: euclidean_spearman
294
+ value: 77.14250754925013
295
+ - type: manhattan_pearson
296
+ value: 75.85855462882735
297
+ - type: manhattan_spearman
298
+ value: 76.6223895689777
299
+ - task:
300
+ type: STS
301
+ dataset:
302
+ type: mteb/sts12-sts
303
+ name: MTEB STS12
304
+ config: default
305
+ split: test
306
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
307
+ metrics:
308
+ - type: cos_sim_pearson
309
+ value: 83.1019526956277
310
+ - type: cos_sim_spearman
311
+ value: 72.98362332123834
312
+ - type: euclidean_pearson
313
+ value: 78.42992808997602
314
+ - type: euclidean_spearman
315
+ value: 70.79569301491145
316
+ - type: manhattan_pearson
317
+ value: 77.96413528436207
318
+ - type: manhattan_spearman
319
+ value: 70.34707852104586
320
+ - task:
321
+ type: STS
322
+ dataset:
323
+ type: mteb/sts13-sts
324
+ name: MTEB STS13
325
+ config: default
326
+ split: test
327
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
328
+ metrics:
329
+ - type: cos_sim_pearson
330
+ value: 85.09200805966644
331
+ - type: cos_sim_spearman
332
+ value: 85.52497834636847
333
+ - type: euclidean_pearson
334
+ value: 84.20407512505086
335
+ - type: euclidean_spearman
336
+ value: 85.35640946044332
337
+ - type: manhattan_pearson
338
+ value: 83.79425758102826
339
+ - type: manhattan_spearman
340
+ value: 84.9531731481683
341
+ - task:
342
+ type: STS
343
+ dataset:
344
+ type: mteb/sts14-sts
345
+ name: MTEB STS14
346
+ config: default
347
+ split: test
348
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
349
+ metrics:
350
+ - type: cos_sim_pearson
351
+ value: 82.43419245577238
352
+ - type: cos_sim_spearman
353
+ value: 79.87215923164575
354
+ - type: euclidean_pearson
355
+ value: 80.99628882719712
356
+ - type: euclidean_spearman
357
+ value: 79.2671186335978
358
+ - type: manhattan_pearson
359
+ value: 80.47076166661054
360
+ - type: manhattan_spearman
361
+ value: 78.82329686631051
362
+ - task:
363
+ type: STS
364
+ dataset:
365
+ type: mteb/sts15-sts
366
+ name: MTEB STS15
367
+ config: default
368
+ split: test
369
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
370
+ metrics:
371
+ - type: cos_sim_pearson
372
+ value: 84.67294508915346
373
+ - type: cos_sim_spearman
374
+ value: 85.34528695616378
375
+ - type: euclidean_pearson
376
+ value: 83.65270617275111
377
+ - type: euclidean_spearman
378
+ value: 84.64456096952591
379
+ - type: manhattan_pearson
380
+ value: 83.26416114783083
381
+ - type: manhattan_spearman
382
+ value: 84.26944094512996
383
+ - task:
384
+ type: STS
385
+ dataset:
386
+ type: mteb/sts16-sts
387
+ name: MTEB STS16
388
+ config: default
389
+ split: test
390
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
391
+ metrics:
392
+ - type: cos_sim_pearson
393
+ value: 80.70172607906416
394
+ - type: cos_sim_spearman
395
+ value: 81.96031310316046
396
+ - type: euclidean_pearson
397
+ value: 82.34820192315314
398
+ - type: euclidean_spearman
399
+ value: 82.72576940549405
400
+ - type: manhattan_pearson
401
+ value: 81.93093910116202
402
+ - type: manhattan_spearman
403
+ value: 82.25431799152639
404
+ - task:
405
+ type: STS
406
+ dataset:
407
+ type: mteb/sts17-crosslingual-sts
408
+ name: MTEB STS17 (en-en)
409
+ config: en-en
410
+ split: test
411
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
412
+ metrics:
413
+ - type: cos_sim_pearson
414
+ value: 90.43640731744911
415
+ - type: cos_sim_spearman
416
+ value: 90.16343998541602
417
+ - type: euclidean_pearson
418
+ value: 89.49834342254633
419
+ - type: euclidean_spearman
420
+ value: 90.17304989919288
421
+ - type: manhattan_pearson
422
+ value: 89.32424382015218
423
+ - type: manhattan_spearman
424
+ value: 89.91884845996768
425
+ - task:
426
+ type: STS
427
+ dataset:
428
+ type: mteb/sts22-crosslingual-sts
429
+ name: MTEB STS22 (en)
430
+ config: en
431
+ split: test
432
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
433
+ metrics:
434
+ - type: cos_sim_pearson
435
+ value: 62.06205206393254
436
+ - type: cos_sim_spearman
437
+ value: 60.920792876665885
438
+ - type: euclidean_pearson
439
+ value: 60.49188637403393
440
+ - type: euclidean_spearman
441
+ value: 60.73500415357452
442
+ - type: manhattan_pearson
443
+ value: 59.94692152491976
444
+ - type: manhattan_spearman
445
+ value: 60.215426858338994
446
+ - task:
447
+ type: STS
448
+ dataset:
449
+ type: mteb/stsbenchmark-sts
450
+ name: MTEB STSBenchmark
451
+ config: default
452
+ split: test
453
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
454
+ metrics:
455
+ - type: cos_sim_pearson
456
+ value: 84.78948820087687
457
+ - type: cos_sim_spearman
458
+ value: 84.64531509697663
459
+ - type: euclidean_pearson
460
+ value: 84.77264321816324
461
+ - type: euclidean_spearman
462
+ value: 84.67485410196043
463
+ - type: manhattan_pearson
464
+ value: 84.43100272264775
465
+ - type: manhattan_spearman
466
+ value: 84.29254033404217
467
+ - task:
468
+ type: Reranking
469
+ dataset:
470
+ type: mteb/scidocs-reranking
471
+ name: MTEB SciDocsRR
472
+ config: default
473
+ split: test
474
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
475
+ metrics:
476
+ - type: map
477
+ value: 88.39411601972704
478
+ - type: mrr
479
+ value: 96.49192583016112
480
+ - task:
481
+ type: PairClassification
482
+ dataset:
483
+ type: mteb/sprintduplicatequestions-pairclassification
484
+ name: MTEB SprintDuplicateQuestions
485
+ config: default
486
+ split: test
487
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
488
+ metrics:
489
+ - type: cos_sim_accuracy
490
+ value: 99.55445544554455
491
+ - type: cos_sim_ap
492
+ value: 84.82462858434408
493
+ - type: cos_sim_f1
494
+ value: 76.11464968152866
495
+ - type: cos_sim_precision
496
+ value: 81.10859728506787
497
+ - type: cos_sim_recall
498
+ value: 71.7
499
+ - type: dot_accuracy
500
+ value: 99.48613861386139
501
+ - type: dot_ap
502
+ value: 80.97278220281665
503
+ - type: dot_f1
504
+ value: 72.2914669223394
505
+ - type: dot_precision
506
+ value: 69.42909760589319
507
+ - type: dot_recall
508
+ value: 75.4
509
+ - type: euclidean_accuracy
510
+ value: 99.56138613861386
511
+ - type: euclidean_ap
512
+ value: 85.21566333946467
513
+ - type: euclidean_f1
514
+ value: 76.60239708181345
515
+ - type: euclidean_precision
516
+ value: 79.97823721436343
517
+ - type: euclidean_recall
518
+ value: 73.5
519
+ - type: manhattan_accuracy
520
+ value: 99.55148514851486
521
+ - type: manhattan_ap
522
+ value: 84.49960192851891
523
+ - type: manhattan_f1
524
+ value: 75.9681697612732
525
+ - type: manhattan_precision
526
+ value: 80.90395480225989
527
+ - type: manhattan_recall
528
+ value: 71.6
529
+ - type: max_accuracy
530
+ value: 99.56138613861386
531
+ - type: max_ap
532
+ value: 85.21566333946467
533
+ - type: max_f1
534
+ value: 76.60239708181345
535
+ - task:
536
+ type: Clustering
537
+ dataset:
538
+ type: mteb/stackexchange-clustering
539
+ name: MTEB StackExchangeClustering
540
+ config: default
541
+ split: test
542
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
543
+ metrics:
544
+ - type: v_measure
545
+ value: 49.33929838947165
546
+ - task:
547
+ type: Clustering
548
+ dataset:
549
+ type: mteb/stackexchange-clustering-p2p
550
+ name: MTEB StackExchangeClusteringP2P
551
+ config: default
552
+ split: test
553
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
554
+ metrics:
555
+ - type: v_measure
556
+ value: 31.523973661953686
557
+ - task:
558
+ type: Reranking
559
+ dataset:
560
+ type: mteb/stackoverflowdupquestions-reranking
561
+ name: MTEB StackOverflowDupQuestions
562
+ config: default
563
+ split: test
564
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
565
+ metrics:
566
+ - type: map
567
+ value: 52.22408767861519
568
+ - type: mrr
569
+ value: 53.16279921059333
570
+ - task:
571
+ type: Summarization
572
+ dataset:
573
+ type: mteb/summeval
574
+ name: MTEB SummEval
575
+ config: default
576
+ split: test
577
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
578
+ metrics:
579
+ - type: cos_sim_pearson
580
+ value: 28.128173244098726
581
+ - type: cos_sim_spearman
582
+ value: 30.149225143523662
583
+ - type: dot_pearson
584
+ value: 24.322914168643386
585
+ - type: dot_spearman
586
+ value: 26.38194545372431
587
+ - task:
588
+ type: Classification
589
+ dataset:
590
+ type: mteb/toxic_conversations_50k
591
+ name: MTEB ToxicConversationsClassification
592
+ config: default
593
+ split: test
594
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
595
+ metrics:
596
+ - type: accuracy
597
+ value: 67.6684
598
+ - type: ap
599
+ value: 12.681984793717413
600
+ - type: f1
601
+ value: 51.97637585601529
602
+ - task:
603
+ type: Classification
604
+ dataset:
605
+ type: mteb/tweet_sentiment_extraction
606
+ name: MTEB TweetSentimentExtractionClassification
607
+ config: default
608
+ split: test
609
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
610
+ metrics:
611
+ - type: accuracy
612
+ value: 58.44086021505377
613
+ - type: f1
614
+ value: 58.68058329615692
615
+ - task:
616
+ type: Clustering
617
+ dataset:
618
+ type: mteb/twentynewsgroups-clustering
619
+ name: MTEB TwentyNewsgroupsClustering
620
+ config: default
621
+ split: test
622
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
623
+ metrics:
624
+ - type: v_measure
625
+ value: 44.226944341054015
626
+ - task:
627
+ type: PairClassification
628
+ dataset:
629
+ type: mteb/twittersemeval2015-pairclassification
630
+ name: MTEB TwitterSemEval2015
631
+ config: default
632
+ split: test
633
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
634
+ metrics:
635
+ - type: cos_sim_accuracy
636
+ value: 86.87488823985218
637
+ - type: cos_sim_ap
638
+ value: 76.85283892335002
639
+ - type: cos_sim_f1
640
+ value: 70.42042042042041
641
+ - type: cos_sim_precision
642
+ value: 66.96811042360781
643
+ - type: cos_sim_recall
644
+ value: 74.24802110817942
645
+ - type: dot_accuracy
646
+ value: 84.85426476724086
647
+ - type: dot_ap
648
+ value: 70.77036812650887
649
+ - type: dot_f1
650
+ value: 66.4901577069184
651
+ - type: dot_precision
652
+ value: 58.97488258117215
653
+ - type: dot_recall
654
+ value: 76.2005277044855
655
+ - type: euclidean_accuracy
656
+ value: 86.95833581689217
657
+ - type: euclidean_ap
658
+ value: 77.05903224969623
659
+ - type: euclidean_f1
660
+ value: 70.75323419175432
661
+ - type: euclidean_precision
662
+ value: 65.2979245704084
663
+ - type: euclidean_recall
664
+ value: 77.20316622691293
665
+ - type: manhattan_accuracy
666
+ value: 86.88084878106932
667
+ - type: manhattan_ap
668
+ value: 76.95056209047733
669
+ - type: manhattan_f1
670
+ value: 70.61542203843348
671
+ - type: manhattan_precision
672
+ value: 65.50090252707581
673
+ - type: manhattan_recall
674
+ value: 76.59630606860158
675
+ - type: max_accuracy
676
+ value: 86.95833581689217
677
+ - type: max_ap
678
+ value: 77.05903224969623
679
+ - type: max_f1
680
+ value: 70.75323419175432
681
+ - task:
682
+ type: PairClassification
683
+ dataset:
684
+ type: mteb/twitterurlcorpus-pairclassification
685
+ name: MTEB TwitterURLCorpus
686
+ config: default
687
+ split: test
688
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
689
+ metrics:
690
+ - type: cos_sim_accuracy
691
+ value: 88.43870066363954
692
+ - type: cos_sim_ap
693
+ value: 84.77197321507954
694
+ - type: cos_sim_f1
695
+ value: 76.91440595175472
696
+ - type: cos_sim_precision
697
+ value: 75.11375311903713
698
+ - type: cos_sim_recall
699
+ value: 78.80351093316908
700
+ - type: dot_accuracy
701
+ value: 87.60624054022587
702
+ - type: dot_ap
703
+ value: 83.16574114504616
704
+ - type: dot_f1
705
+ value: 75.5050226294293
706
+ - type: dot_precision
707
+ value: 72.30953555571217
708
+ - type: dot_recall
709
+ value: 78.99599630428088
710
+ - type: euclidean_accuracy
711
+ value: 88.2951061435169
712
+ - type: euclidean_ap
713
+ value: 84.28559058741602
714
+ - type: euclidean_f1
715
+ value: 76.7921146953405
716
+ - type: euclidean_precision
717
+ value: 74.54334589736156
718
+ - type: euclidean_recall
719
+ value: 79.1807822605482
720
+ - type: manhattan_accuracy
721
+ value: 88.23883261536074
722
+ - type: manhattan_ap
723
+ value: 84.20593815258039
724
+ - type: manhattan_f1
725
+ value: 76.74366281685916
726
+ - type: manhattan_precision
727
+ value: 74.80263157894737
728
+ - type: manhattan_recall
729
+ value: 78.78811210348013
730
+ - type: max_accuracy
731
+ value: 88.43870066363954
732
+ - type: max_ap
733
+ value: 84.77197321507954
734
+ - type: max_f1
735
+ value: 76.91440595175472
736
+ ---