File size: 5,786 Bytes
9ca6f51 750b095 57aabc7 750b095 7683a91 57aabc7 750b095 57aabc7 6901507 9ca6f51 750b095 9ca6f51 750b095 9ca6f51 59ee130 6901507 9ca6f51 750b095 9ca6f51 5ab0210 9ca6f51 750b095 f3ce2c7 9ca6f51 750b095 9ca6f51 750b095 9ca6f51 750b095 9ca6f51 750b095 6901507 9ca6f51 750b095 9ca6f51 750b095 f3ce2c7 ad21e49 f3ce2c7 ad21e49 f3ce2c7 ad21e49 f3ce2c7 ad21e49 ace64ac b655a11 ace64ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_7_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-luganda-CV-train-validation-7.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_7_0
type: common_voice_7_0
config: lg
split: test
args: lg
metrics:
- name: Wer
type: wer
value: 0.1933150003273751
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v-bert-2.0-luganda-CV-train-validation-7.0
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the Luganda mozilla common voices 7.0 dataset. We use the train and validation set for training and the test set for evaluation.
When using this dataset, make sure that the audio has a sampling rate of 16kHz.It achieves the following results on the test set:
- Loss: 0.2282
- Wer: 0.1933
## Training and evaluation data
The model was trained on version 7 of the Luganda dataset of Mozilla common voices dataset. We used the train and validation set for training and the test dataset for validation. The [training script](https://github.com/MusinguziDenis/Luganda-ASR/blob/main/wav2vec/notebook/Fine_Tune_W2V2_BERT_on_CV7_Luganda.ipynb) was adapted from this [transformers repo](https://huggingface.co/blog/fine-tune-w2v2-bert).
## Training procedure
We trained the model on a 32 GB V100 GPU for 10 epochs using a learning rate of 5e-05. We used the AdamW optimizer.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1859 | 1.89 | 300 | 0.2854 | 0.2866 |
| 0.1137 | 3.77 | 600 | 0.2503 | 0.2469 |
| 0.0712 | 5.66 | 900 | 0.2043 | 0.2092 |
| 0.0446 | 7.55 | 1200 | 0.2156 | 0.2005 |
| 0.0269 | 9.43 | 1500 | 0.2282 | 0.1933 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.2.1+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
### Usage
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
test_dataset = load_dataset("common_voice", "lg", split="test[:10]")
model = AutoModelForCTC.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0")
processor = Wav2Vec2BertProcessor.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
### Evaluation
The model can be evaluated as follows on the Luganda test dataset.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
import re
test_dataset = load_dataset("common_voice", "lg", split="test")
wer = load_metric("wer")
model = AutoModelForCTC.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0").to('cuda')
processor = Wav2Vec2BertProcessor.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0")
chars_to_remove_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\»\«]'
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
def remove_special_characters(batch):
# remove special characters
batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower()
return batch
test_dataset = test_dataset.map(remove_special_characters)
def prepare_dataset(batch):
audio = batch["audio"]
batch["input_features"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]
batch["input_length"] = len(batch["input_features"])
batch["labels"] = processor(text=batch["sentence"]).input_ids
return batch
test_dataset = test_dataset.map(prepare_dataset, remove_columns=test_dataset.column_names)
# Evaluation is carried out with a batch size of 1
def map_to_result(batch):
with torch.no_grad():
input_values = torch.tensor(batch["input_features"], device="cuda").unsqueeze(0)
logits = model(input_values).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_str"] = processor.batch_decode(pred_ids)[0]
batch["text"] = processor.decode(batch["labels"], group_tokens=False)
return batch
results = test_dataset.map(map_to_result)
print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["text"])))
```
### Test Result: 19.33%
|