--- license: apache-2.0 language: - en metrics: - code_eval library_name: adapter-transformers pipeline_tag: text-generation tags: - code --- # Ddroidlabs-mixture-of-agents small agentic model designed as a coding assistant # Mixture of Agents Model (MAM) - Full-Stack Development Team ## Overview The Mixture of Agents Model (MAM) is an AI-driven full-stack development team that integrates specialized agents for front-end development, back-end development, database management, DevOps, and project management. This unified model leverages a pretrained transformer and fine-tuned datasets to handle a variety of software development tasks efficiently. ## Folder Structure ``` mixture_of_agents/ ├── app.py ├── colab_notebook.ipynb ├── dataset/ │ └── code_finetune_dataset.json ├── agents/ │ ├── front_end_agent.py │ ├── back_end_agent.py │ ├── database_agent.py │ ├── devops_agent.py │ └── project_management_agent.py ├── integration/ │ └── integration_layer.py └── model/ ├── load_pretrained_model.py └── fine_tune_model.py ``` ## Setup Instructions ### Prerequisites - Python 3.7 or higher - Flask - Google Colab account (for running the notebook) - Libraries: `transformers`, `datasets`, `numpy`, `pandas` ### Installation 1. **Clone the Repository:** ```bash git clone https://github.com/your-repo/mixture_of_agents.git cd mixture_of_agents ``` 2. **Install Required Libraries:** ```bash pip install -r requirements.txt ``` 3. **Upload to Google Drive:** - Upload the `mixture_of_agents` folder to your Google Drive. 4. **Open Colab Notebook:** - Open `colab_notebook.ipynb` in Google Colab. ### Running the Model 1. **Mount Google Drive:** - Mount your Google Drive in Colab by running the first cell of the notebook: ```python from google.colab import drive drive.mount('/content/drive') ``` 2. **Install Necessary Packages:** - Install the required packages in the Colab environment: ```python !pip install transformers datasets ``` 3. **Load and Fine-Tune the Model:** - Follow the steps in the Colab notebook to load the pretrained model and fine-tune it using the provided dataset: ```python from model.load_pretrained_model import load_model_and_tokenizer model, tokenizer = load_model_and_tokenizer() from model.fine_tune_model import fine_tune_model fine_tune_model(model, tokenizer, '/content/drive/MyDrive/mixture_of_agents/dataset/code_finetune_dataset.json') ``` 4. **Initialize and Use the Agents:** - Initialize the agents and use the integration layer to process tasks: ```python from agents.front_end_agent import FrontEndAgent from agents.back_end_agent import BackEndAgent from agents.database_agent import DatabaseAgent from agents.devops_agent import DevOpsAgent from agents.project_management_agent import ProjectManagementAgent from integration.integration_layer import IntegrationLayer front_end_agent = FrontEndAgent(model, tokenizer) back_end_agent = BackEndAgent(model, tokenizer) database_agent = DatabaseAgent(model, tokenizer) devops_agent = DevOpsAgent(model, tokenizer) project_management_agent = ProjectManagementAgent(model, tokenizer) integration_layer = IntegrationLayer(front_end_agent, back_end_agent, database_agent, devops_agent, project_management_agent) task_data = {'task': 'Create a responsive website layout'} result = integration_layer.process_task('front_end', task_data) print(result) ``` ### Running the Web Application 1. **Ensure All Agent Files and Integration Layer Are Available:** - Make sure the `agents` and `integration` directories with their respective Python files (`front_end_agent.py`, `back_end_agent.py`, `database_agent.py`, `devops_agent.py`, `project_management_agent.py`, and `integration_layer.py`) are in the same directory as `app.py`. 2. **Run the Application:** - Execute the `app.py` script to start the Flask web server: ```bash python app.py ``` 3. **Using the API:** - Open your web browser and navigate to `http://127.0.0.1:5000/` to see the welcome message. - Use a tool like `curl` or Postman to send a POST request to the `/process` endpoint with JSON payload to process tasks. ### Example POST Request You can use the following example JSON payload to test the `/process` endpoint: ```json { "task_type": "front_end", "task_data": { "task": "Create a responsive website layout" } } ``` **Using `curl`:** ```bash curl -X POST http://127.0.0.1:5000/process -H "Content-Type: application/json" -d '{"task_type": "front_end", "task_data": {"task": "Create a responsive website layout"}}' ``` ## Agent Descriptions ### Front-End Agent - **File:** `agents/front_end_agent.py` - **Responsibilities:** UI/UX design, HTML, CSS, JavaScript frameworks (React, Vue). ### Back-End Agent - **File:** `agents/back_end_agent.py` - **Responsibilities:** Server-side logic, API development, frameworks like Node.js, Django. ### Database Agent - **File:** `agents/database_agent.py` - **Responsibilities:** Database design, query optimization, data migration. ### DevOps Agent - **File:** `agents/devops_agent.py` - **Responsibilities:** CI/CD pipelines, server management, deployment automation. ### Project Management Agent - **File:** `agents/project_management_agent.py` - **Responsibilities:** Requirement gathering, task management, progress tracking. ### Integration Layer - **File:** `integration/integration_layer.py` - **Responsibilities:** Ensures seamless communication and coordination between agents. ## Fine-Tuning Dataset ### Dataset File - **File:** `dataset/code_finetune_dataset.json` - **Description:** Contains examples of various coding tasks to fine-tune the model for development-related tasks. ## Contributing Contributions are welcome! Please fork the repository and create a pull request with your changes. Ensure your code follows the project's style guidelines and includes appropriate tests. ## License This project is licensed under the apache-2.0 License. ## Contact For any questions or issues, please open an issue on GitHub or contact the repository maintainer.