dodge99 commited on
Commit
b60cd59
1 Parent(s): 7a39216

deep rl class

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 207.28 +/- 90.34
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fda20c5c320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fda20c5c3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fda20c5c440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fda20c5c4d0>", "_build": "<function ActorCriticPolicy._build at 0x7fda20c5c560>", "forward": "<function ActorCriticPolicy.forward at 0x7fda20c5c5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fda20c5c680>", "_predict": "<function ActorCriticPolicy._predict at 0x7fda20c5c710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fda20c5c7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fda20c5c830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fda20c5c8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fda20c99e40>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667421396668360224, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA2ywD2PPmK6GqOyOc1+srI8NWK7sLbMuAAAgD8AAIA/Gi+evfY8Erq6RI67ZazYN6id0DtiWsY2AACAPwAAgD9z18A9cYMXu39YhrscEGc8YbfvuwQuSj0AAIA/AACAP4DXOz57WoK8/CoUO2y5zLjoEeO9JzAmugAAgD8AAIA/zcoTPdczErmFL/y7kGarN6JK2TiVFha3AACAPwAAgD8zdz29uOb1uY77jjvBmnQ4ftNBO1OaFrkAAIA/AACAP4A4WT2FrLC7TsXburnQqDx8pww9njSOvQAAgD8AAIA/Gpi7vcOVALrG9ga7YO2StrEoFDvCfB06AACAPwAAgD8ag8w9uGbEubU5ZLhxBjKzge7DuchliDcAAIA/AACAP4AI4L32CG26tcJ4tzWy37KjYys7svCNNgAAgD8AAIA/TbRdPZyMpz9r6ho/6SQLvx5Uy7uC57Q9AAAAAAAAAAAzAu887GmAuaN7ejoxZ0E15Zw4O2UMk7kAAIA/AACAPwASU73hIww+rrXRvBub9r1ZJAu9W3qrvAAAAAAAAAAAgEp+vfa4OLo2LHC6zcq4tQ8QnTtuoYw5AACAPwAAgD8zMm69j45ausHXhrpsqPY1WiQWOoSqnjkAAIA/AACAPxr+Lb19sjk+ivLrPLMAO77JOT+61aglPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUTBjCtajZUCUhpRSlIwBbJRN6AOMAXSUR0ClFR+NcW0rdX2UKGgGaAloD0MI5KPFGUPMYECUhpRSlGgVTegDaBZHQKVI+cc2itd1fZQoaAZoCWgPQwg+ldOekmZhQJSGlFKUaBVN6ANoFkdApUtSYoiLVHV9lChoBmgJaA9DCM/XLJeNA2RAlIaUUpRoFU3oA2gWR0ClTx7BXS0CdX2UKGgGaAloD0MIl1ZD4h70Y0CUhpRSlGgVTegDaBZHQKVPQOXmeUZ1fZQoaAZoCWgPQwimRuhn6lJhQJSGlFKUaBVN6ANoFkdApVbnAfuCw3V9lChoBmgJaA9DCAw7jEl/fFxAlIaUUpRoFU3oA2gWR0ClVvmNJe3QdX2UKGgGaAloD0MIGjBI+rQbX0CUhpRSlGgVTegDaBZHQKVbjpyIYWN1fZQoaAZoCWgPQwhMUS6N31tlQJSGlFKUaBVN6ANoFkdApVxcsFt8/nV9lChoBmgJaA9DCAot6/6xz2JAlIaUUpRoFU3oA2gWR0ClXQd3bEgodX2UKGgGaAloD0MIuVSlLa4kX0CUhpRSlGgVTegDaBZHQKVerKmKqGV1fZQoaAZoCWgPQwjMCdrk8OthQJSGlFKUaBVN6ANoFkdApV7B55Z8r3V9lChoBmgJaA9DCFA4u7VMBmRAlIaUUpRoFU3oA2gWR0ClX1Xi704BdX2UKGgGaAloD0MIUb8LW7OaYUCUhpRSlGgVTegDaBZHQKVgyguh9LJ1fZQoaAZoCWgPQwhg6Xx4Fj9hQJSGlFKUaBVN6ANoFkdApWF+KMvRJHV9lChoBmgJaA9DCAVtcvgkdmVAlIaUUpRoFU3oA2gWR0ClYfshouf3dX2UKGgGaAloD0MIUAEwnkG3X0CUhpRSlGgVTegDaBZHQKViZSflIVd1fZQoaAZoCWgPQwjyejApPiFdQJSGlFKUaBVN6ANoFkdApWZ4AGSpznV9lChoBmgJaA9DCJIiMqzixGBAlIaUUpRoFU3oA2gWR0ClaM1opQUIdX2UKGgGaAloD0MInDI334jJZECUhpRSlGgVTegDaBZHQKVsjWzWwvB1fZQoaAZoCWgPQwgUe2gfq8liQJSGlFKUaBVN6ANoFkdApWyxEx7AtXV9lChoBmgJaA9DCJjaUgd5fF5AlIaUUpRoFU3oA2gWR0CldLMVDa4+dX2UKGgGaAloD0MI6iKFsvDGW0CUhpRSlGgVTegDaBZHQKV0yVGkN4J1fZQoaAZoCWgPQwjZk8DmnPFhQJSGlFKUaBVN6ANoFkdApXnH9aUzK3V9lChoBmgJaA9DCBK/Yg0XrmJAlIaUUpRoFU3oA2gWR0Cleqv3JxNqdX2UKGgGaAloD0MIRuo9ldO/X0CUhpRSlGgVTegDaBZHQKV7aPCl7+l1fZQoaAZoCWgPQwgBiSZQRPVjQJSGlFKUaBVN6ANoFkdApX1DGYKIBXV9lChoBmgJaA9DCLnH0ocuNGJAlIaUUpRoFU3oA2gWR0ClfVvS2H+IdX2UKGgGaAloD0MIf/s6cM6IX0CUhpRSlGgVTegDaBZHQKV9+po9LYh1fZQoaAZoCWgPQwgrTrUW5o1kQJSGlFKUaBVN6ANoFkdApX950CA+ZHV9lChoBmgJaA9DCObLC7CPsV9AlIaUUpRoFU3oA2gWR0ClgEE4FRpDdX2UKGgGaAloD0MI3nU25B9jYECUhpRSlGgVTegDaBZHQKWAzNQCSzR1fZQoaAZoCWgPQwg1071Oak1jQJSGlFKUaBVN6ANoFkdApYE/2TPjXHV9lChoBmgJaA9DCIMWEjC6nEZAlIaUUpRoFU0CAWgWR0ClgUxigCfZdX2UKGgGaAloD0MIX3r7c9HJY0CUhpRSlGgVTegDaBZHQKW3MUOd5IJ1fZQoaAZoCWgPQwgHmPkOfhVjQJSGlFKUaBVN6ANoFkdApbmWCGvfTHV9lChoBmgJaA9DCIYcW88Qn1tAlIaUUpRoFU3oA2gWR0ClvVHerMkhdX2UKGgGaAloD0MIGw5LAz/6XkCUhpRSlGgVTegDaBZHQKW9dKp1ifB1fZQoaAZoCWgPQwi4IFuWL1BiQJSGlFKUaBVN6ANoFkdApcUpnHvMKXV9lChoBmgJaA9DCF9DcFxGdmRAlIaUUpRoFU3oA2gWR0ClxT3xFy7xdX2UKGgGaAloD0MIHhhA+NAOZUCUhpRSlGgVTegDaBZHQKXLGR5C4SZ1fZQoaAZoCWgPQwjgERWqm05iQJSGlFKUaBVN6ANoFkdApcvcKTjebnV9lChoBmgJaA9DCCLhe3+DjEBAlIaUUpRoFUv0aBZHQKXNVtj0+Tx1fZQoaAZoCWgPQwhlARO4dSliQJSGlFKUaBVN6ANoFkdApc2zQAuIynV9lChoBmgJaA9DCP9Z8+MvoGRAlIaUUpRoFU3oA2gWR0Clzcqyv9tNdX2UKGgGaAloD0MIhzYAGxCSXkCUhpRSlGgVTegDaBZHQKXOY74BV+91fZQoaAZoCWgPQwgP0H05s4phQJSGlFKUaBVN6ANoFkdApc+wIWxhUnV9lChoBmgJaA9DCMxjzcgg0l9AlIaUUpRoFU3oA2gWR0Cl0FRfv4M4dX2UKGgGaAloD0MIZFdaRuqtZECUhpRSlGgVTegDaBZHQKXQyhnrY5F1fZQoaAZoCWgPQwiale1DXiJjQJSGlFKUaBVN6ANoFkdApdEamZVn3HV9lChoBmgJaA9DCEeNCTEX4WJAlIaUUpRoFU3oA2gWR0Cl0SXx4IKMdX2UKGgGaAloD0MIBmhbzbqYZECUhpRSlGgVTegDaBZHQKXUhamGdqd1fZQoaAZoCWgPQwhUHt0Ii6pmQJSGlFKUaBVN6ANoFkdApdaVzhgmZ3V9lChoBmgJaA9DCACQEyYM/WJAlIaUUpRoFU3oA2gWR0Cl2eavRqoIdX2UKGgGaAloD0MIbagY52+/YECUhpRSlGgVTegDaBZHQKXaBqoIfKZ1fZQoaAZoCWgPQwhXW7G/bGJjQJSGlFKUaBVN6ANoFkdApeDt8uzyBnV9lChoBmgJaA9DCHpVZ7XAx2JAlIaUUpRoFU3oA2gWR0Cl5kCdrftQdX2UKGgGaAloD0MIgo5WtSQxYkCUhpRSlGgVTegDaBZHQKXm8sXizcB1fZQoaAZoCWgPQwh47dKGwy5mQJSGlFKUaBVN6ANoFkdApeg/cgyM1nV9lChoBmgJaA9DCJ6WH7jKcFtAlIaUUpRoFU3oA2gWR0Cl6JfCZWq+dX2UKGgGaAloD0MIyVUsflOYWkCUhpRSlGgVTegDaBZHQKXorTho/Rp1fZQoaAZoCWgPQwgAxjNo6FJcQJSGlFKUaBVN6ANoFkdApek32oNutXV9lChoBmgJaA9DCDIEAMeePWFAlIaUUpRoFU3oA2gWR0Cl6ng44p+ddX2UKGgGaAloD0MI/OHnvwfTYUCUhpRSlGgVTegDaBZHQKXrFlDF6zF1fZQoaAZoCWgPQwj3dktywIxhQJSGlFKUaBVN6ANoFkdApeuJMnJDE3V9lChoBmgJaA9DCHcQO1PodGRAlIaUUpRoFU3oA2gWR0Cl69aZQYUGdX2UKGgGaAloD0MIb5upEI98X0CUhpRSlGgVTegDaBZHQKXr4PBi1At1fZQoaAZoCWgPQwi/nq9ZLnZlQJSGlFKUaBVN6ANoFkdAph68tyxRmHV9lChoBmgJaA9DCLq8OVyrPStAlIaUUpRoFUv3aBZHQKYg6bmU4aR1fZQoaAZoCWgPQwjQtpp1RtxmQJSGlFKUaBVN6ANoFkdApiD98ma6SXV9lChoBmgJaA9DCAEz38FP4VdAlIaUUpRoFU3oA2gWR0CmJI0CaJAMdX2UKGgGaAloD0MISrIOR1eKYkCUhpRSlGgVTegDaBZHQKYkrYs/Y8N1fZQoaAZoCWgPQwghdxGmqA9iQJSGlFKUaBVN6ANoFkdApivzIeYD1XV9lChoBmgJaA9DCOy/zk2bLGVAlIaUUpRoFU3oA2gWR0CmMbX5nDiwdX2UKGgGaAloD0MIlbVN8bjYXUCUhpRSlGgVTegDaBZHQKYyewL3K0V1fZQoaAZoCWgPQwgHQx1WOIhgQJSGlFKUaBVN6ANoFkdApjPJv5xionV9lChoBmgJaA9DCMO8x5mmGmNAlIaUUpRoFU3oA2gWR0CmNBmKhtcfdX2UKGgGaAloD0MIHec24d6YYUCUhpRSlGgVTegDaBZHQKY0Ly5qdpZ1fZQoaAZoCWgPQwjZBYNrbn5kQJSGlFKUaBVN6ANoFkdApjS3uTibUnV9lChoBmgJaA9DCPJ7m/5sP2NAlIaUUpRoFU3oA2gWR0CmNghl+VkddX2UKGgGaAloD0MIAaJgxhTVY0CUhpRSlGgVTegDaBZHQKY2seXiR4h1fZQoaAZoCWgPQwgB+RIqOKFkQJSGlFKUaBVN6ANoFkdApjd3fhuO0nV9lChoBmgJaA9DCJGBPLt8O2FAlIaUUpRoFU3oA2gWR0CmN4KG1x82dX2UKGgGaAloD0MIWONsOgIIY0CUhpRSlGgVTegDaBZHQKY7BWU8mrt1fZQoaAZoCWgPQwjo+j4cJDRIQJSGlFKUaBVL+GgWR0CmPIR9oexOdX2UKGgGaAloD0MIsDxIT5FXYECUhpRSlGgVTegDaBZHQKY9GofjjrB1fZQoaAZoCWgPQwh2OLpKd1RkQJSGlFKUaBVN6ANoFkdApj0pbW3BpHV9lChoBmgJaA9DCOeNk8I8YGBAlIaUUpRoFU3oA2gWR0CmQHnpSrHVdX2UKGgGaAloD0MI1GLwMG0EY0CUhpRSlGgVTegDaBZHQKZAm4+bExZ1fZQoaAZoCWgPQwg3GOqwwgpjQJSGlFKUaBVN6ANoFkdApkfYHmig03V9lChoBmgJaA9DCE6c3O9QK2BAlIaUUpRoFU3oA2gWR0CmTc0Xxe9jdX2UKGgGaAloD0MIAaYMHNA0ZECUhpRSlGgVTegDaBZHQKZOlDrqt5l1fZQoaAZoCWgPQwiJQsu6/+tjQJSGlFKUaBVN6ANoFkdAplAMG3WnTHV9lChoBmgJaA9DCGrAIOnTgWJAlIaUUpRoFU3oA2gWR0CmUGRmseXBdX2UKGgGaAloD0MIfAxWnGpIYUCUhpRSlGgVTegDaBZHQKZQemx+rlx1fZQoaAZoCWgPQwgeqFMe3T1hQJSGlFKUaBVN6ANoFkdAplETsrupj3V9lChoBmgJaA9DCE8Cm3PwwGVAlIaUUpRoFU3oA2gWR0CmUm8c2itadX2UKGgGaAloD0MI0clS6/1nYECUhpRSlGgVTegDaBZHQKZUCIsyzol1fZQoaAZoCWgPQwgvwD469QRkQJSGlFKUaBVN6ANoFkdAplQU65oXbnV9lChoBmgJaA9DCHuFBfcDgWRAlIaUUpRoFU3oA2gWR0CmWAs3hn8LdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 170, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (246 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 207.27535301586894, "std_reward": 90.33917831329066, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-02T21:27:40.017062"}
rlander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dde661463aac5b0831cf73a8af12e92fb0c9bb60ab411d2fbb43b1c7f810752
3
+ size 147151
rlander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
rlander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fda20c5c320>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fda20c5c3b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fda20c5c440>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fda20c5c4d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fda20c5c560>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fda20c5c5f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fda20c5c680>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fda20c5c710>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fda20c5c7a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fda20c5c830>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fda20c5c8c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fda20c99e40>"
20
+ },
21
+ "verbose": true,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1667421396668360224,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA2ywD2PPmK6GqOyOc1+srI8NWK7sLbMuAAAgD8AAIA/Gi+evfY8Erq6RI67ZazYN6id0DtiWsY2AACAPwAAgD9z18A9cYMXu39YhrscEGc8YbfvuwQuSj0AAIA/AACAP4DXOz57WoK8/CoUO2y5zLjoEeO9JzAmugAAgD8AAIA/zcoTPdczErmFL/y7kGarN6JK2TiVFha3AACAPwAAgD8zdz29uOb1uY77jjvBmnQ4ftNBO1OaFrkAAIA/AACAP4A4WT2FrLC7TsXburnQqDx8pww9njSOvQAAgD8AAIA/Gpi7vcOVALrG9ga7YO2StrEoFDvCfB06AACAPwAAgD8ag8w9uGbEubU5ZLhxBjKzge7DuchliDcAAIA/AACAP4AI4L32CG26tcJ4tzWy37KjYys7svCNNgAAgD8AAIA/TbRdPZyMpz9r6ho/6SQLvx5Uy7uC57Q9AAAAAAAAAAAzAu887GmAuaN7ejoxZ0E15Zw4O2UMk7kAAIA/AACAPwASU73hIww+rrXRvBub9r1ZJAu9W3qrvAAAAAAAAAAAgEp+vfa4OLo2LHC6zcq4tQ8QnTtuoYw5AACAPwAAgD8zMm69j45ausHXhrpsqPY1WiQWOoSqnjkAAIA/AACAPxr+Lb19sjk+ivLrPLMAO77JOT+61aglPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUTBjCtajZUCUhpRSlIwBbJRN6AOMAXSUR0ClFR+NcW0rdX2UKGgGaAloD0MI5KPFGUPMYECUhpRSlGgVTegDaBZHQKVI+cc2itd1fZQoaAZoCWgPQwg+ldOekmZhQJSGlFKUaBVN6ANoFkdApUtSYoiLVHV9lChoBmgJaA9DCM/XLJeNA2RAlIaUUpRoFU3oA2gWR0ClTx7BXS0CdX2UKGgGaAloD0MIl1ZD4h70Y0CUhpRSlGgVTegDaBZHQKVPQOXmeUZ1fZQoaAZoCWgPQwimRuhn6lJhQJSGlFKUaBVN6ANoFkdApVbnAfuCw3V9lChoBmgJaA9DCAw7jEl/fFxAlIaUUpRoFU3oA2gWR0ClVvmNJe3QdX2UKGgGaAloD0MIGjBI+rQbX0CUhpRSlGgVTegDaBZHQKVbjpyIYWN1fZQoaAZoCWgPQwhMUS6N31tlQJSGlFKUaBVN6ANoFkdApVxcsFt8/nV9lChoBmgJaA9DCAot6/6xz2JAlIaUUpRoFU3oA2gWR0ClXQd3bEgodX2UKGgGaAloD0MIuVSlLa4kX0CUhpRSlGgVTegDaBZHQKVerKmKqGV1fZQoaAZoCWgPQwjMCdrk8OthQJSGlFKUaBVN6ANoFkdApV7B55Z8r3V9lChoBmgJaA9DCFA4u7VMBmRAlIaUUpRoFU3oA2gWR0ClX1Xi704BdX2UKGgGaAloD0MIUb8LW7OaYUCUhpRSlGgVTegDaBZHQKVgyguh9LJ1fZQoaAZoCWgPQwhg6Xx4Fj9hQJSGlFKUaBVN6ANoFkdApWF+KMvRJHV9lChoBmgJaA9DCAVtcvgkdmVAlIaUUpRoFU3oA2gWR0ClYfshouf3dX2UKGgGaAloD0MIUAEwnkG3X0CUhpRSlGgVTegDaBZHQKViZSflIVd1fZQoaAZoCWgPQwjyejApPiFdQJSGlFKUaBVN6ANoFkdApWZ4AGSpznV9lChoBmgJaA9DCJIiMqzixGBAlIaUUpRoFU3oA2gWR0ClaM1opQUIdX2UKGgGaAloD0MInDI334jJZECUhpRSlGgVTegDaBZHQKVsjWzWwvB1fZQoaAZoCWgPQwgUe2gfq8liQJSGlFKUaBVN6ANoFkdApWyxEx7AtXV9lChoBmgJaA9DCJjaUgd5fF5AlIaUUpRoFU3oA2gWR0CldLMVDa4+dX2UKGgGaAloD0MI6iKFsvDGW0CUhpRSlGgVTegDaBZHQKV0yVGkN4J1fZQoaAZoCWgPQwjZk8DmnPFhQJSGlFKUaBVN6ANoFkdApXnH9aUzK3V9lChoBmgJaA9DCBK/Yg0XrmJAlIaUUpRoFU3oA2gWR0Cleqv3JxNqdX2UKGgGaAloD0MIRuo9ldO/X0CUhpRSlGgVTegDaBZHQKV7aPCl7+l1fZQoaAZoCWgPQwgBiSZQRPVjQJSGlFKUaBVN6ANoFkdApX1DGYKIBXV9lChoBmgJaA9DCLnH0ocuNGJAlIaUUpRoFU3oA2gWR0ClfVvS2H+IdX2UKGgGaAloD0MIf/s6cM6IX0CUhpRSlGgVTegDaBZHQKV9+po9LYh1fZQoaAZoCWgPQwgrTrUW5o1kQJSGlFKUaBVN6ANoFkdApX950CA+ZHV9lChoBmgJaA9DCObLC7CPsV9AlIaUUpRoFU3oA2gWR0ClgEE4FRpDdX2UKGgGaAloD0MI3nU25B9jYECUhpRSlGgVTegDaBZHQKWAzNQCSzR1fZQoaAZoCWgPQwg1071Oak1jQJSGlFKUaBVN6ANoFkdApYE/2TPjXHV9lChoBmgJaA9DCIMWEjC6nEZAlIaUUpRoFU0CAWgWR0ClgUxigCfZdX2UKGgGaAloD0MIX3r7c9HJY0CUhpRSlGgVTegDaBZHQKW3MUOd5IJ1fZQoaAZoCWgPQwgHmPkOfhVjQJSGlFKUaBVN6ANoFkdApbmWCGvfTHV9lChoBmgJaA9DCIYcW88Qn1tAlIaUUpRoFU3oA2gWR0ClvVHerMkhdX2UKGgGaAloD0MIGw5LAz/6XkCUhpRSlGgVTegDaBZHQKW9dKp1ifB1fZQoaAZoCWgPQwi4IFuWL1BiQJSGlFKUaBVN6ANoFkdApcUpnHvMKXV9lChoBmgJaA9DCF9DcFxGdmRAlIaUUpRoFU3oA2gWR0ClxT3xFy7xdX2UKGgGaAloD0MIHhhA+NAOZUCUhpRSlGgVTegDaBZHQKXLGR5C4SZ1fZQoaAZoCWgPQwjgERWqm05iQJSGlFKUaBVN6ANoFkdApcvcKTjebnV9lChoBmgJaA9DCCLhe3+DjEBAlIaUUpRoFUv0aBZHQKXNVtj0+Tx1fZQoaAZoCWgPQwhlARO4dSliQJSGlFKUaBVN6ANoFkdApc2zQAuIynV9lChoBmgJaA9DCP9Z8+MvoGRAlIaUUpRoFU3oA2gWR0Clzcqyv9tNdX2UKGgGaAloD0MIhzYAGxCSXkCUhpRSlGgVTegDaBZHQKXOY74BV+91fZQoaAZoCWgPQwgP0H05s4phQJSGlFKUaBVN6ANoFkdApc+wIWxhUnV9lChoBmgJaA9DCMxjzcgg0l9AlIaUUpRoFU3oA2gWR0Cl0FRfv4M4dX2UKGgGaAloD0MIZFdaRuqtZECUhpRSlGgVTegDaBZHQKXQyhnrY5F1fZQoaAZoCWgPQwiale1DXiJjQJSGlFKUaBVN6ANoFkdApdEamZVn3HV9lChoBmgJaA9DCEeNCTEX4WJAlIaUUpRoFU3oA2gWR0Cl0SXx4IKMdX2UKGgGaAloD0MIBmhbzbqYZECUhpRSlGgVTegDaBZHQKXUhamGdqd1fZQoaAZoCWgPQwhUHt0Ii6pmQJSGlFKUaBVN6ANoFkdApdaVzhgmZ3V9lChoBmgJaA9DCACQEyYM/WJAlIaUUpRoFU3oA2gWR0Cl2eavRqoIdX2UKGgGaAloD0MIbagY52+/YECUhpRSlGgVTegDaBZHQKXaBqoIfKZ1fZQoaAZoCWgPQwhXW7G/bGJjQJSGlFKUaBVN6ANoFkdApeDt8uzyBnV9lChoBmgJaA9DCHpVZ7XAx2JAlIaUUpRoFU3oA2gWR0Cl5kCdrftQdX2UKGgGaAloD0MIgo5WtSQxYkCUhpRSlGgVTegDaBZHQKXm8sXizcB1fZQoaAZoCWgPQwh47dKGwy5mQJSGlFKUaBVN6ANoFkdApeg/cgyM1nV9lChoBmgJaA9DCJ6WH7jKcFtAlIaUUpRoFU3oA2gWR0Cl6JfCZWq+dX2UKGgGaAloD0MIyVUsflOYWkCUhpRSlGgVTegDaBZHQKXorTho/Rp1fZQoaAZoCWgPQwgAxjNo6FJcQJSGlFKUaBVN6ANoFkdApek32oNutXV9lChoBmgJaA9DCDIEAMeePWFAlIaUUpRoFU3oA2gWR0Cl6ng44p+ddX2UKGgGaAloD0MI/OHnvwfTYUCUhpRSlGgVTegDaBZHQKXrFlDF6zF1fZQoaAZoCWgPQwj3dktywIxhQJSGlFKUaBVN6ANoFkdApeuJMnJDE3V9lChoBmgJaA9DCHcQO1PodGRAlIaUUpRoFU3oA2gWR0Cl69aZQYUGdX2UKGgGaAloD0MIb5upEI98X0CUhpRSlGgVTegDaBZHQKXr4PBi1At1fZQoaAZoCWgPQwi/nq9ZLnZlQJSGlFKUaBVN6ANoFkdAph68tyxRmHV9lChoBmgJaA9DCLq8OVyrPStAlIaUUpRoFUv3aBZHQKYg6bmU4aR1fZQoaAZoCWgPQwjQtpp1RtxmQJSGlFKUaBVN6ANoFkdApiD98ma6SXV9lChoBmgJaA9DCAEz38FP4VdAlIaUUpRoFU3oA2gWR0CmJI0CaJAMdX2UKGgGaAloD0MISrIOR1eKYkCUhpRSlGgVTegDaBZHQKYkrYs/Y8N1fZQoaAZoCWgPQwghdxGmqA9iQJSGlFKUaBVN6ANoFkdApivzIeYD1XV9lChoBmgJaA9DCOy/zk2bLGVAlIaUUpRoFU3oA2gWR0CmMbX5nDiwdX2UKGgGaAloD0MIlbVN8bjYXUCUhpRSlGgVTegDaBZHQKYyewL3K0V1fZQoaAZoCWgPQwgHQx1WOIhgQJSGlFKUaBVN6ANoFkdApjPJv5xionV9lChoBmgJaA9DCMO8x5mmGmNAlIaUUpRoFU3oA2gWR0CmNBmKhtcfdX2UKGgGaAloD0MIHec24d6YYUCUhpRSlGgVTegDaBZHQKY0Ly5qdpZ1fZQoaAZoCWgPQwjZBYNrbn5kQJSGlFKUaBVN6ANoFkdApjS3uTibUnV9lChoBmgJaA9DCPJ7m/5sP2NAlIaUUpRoFU3oA2gWR0CmNghl+VkddX2UKGgGaAloD0MIAaJgxhTVY0CUhpRSlGgVTegDaBZHQKY2seXiR4h1fZQoaAZoCWgPQwgB+RIqOKFkQJSGlFKUaBVN6ANoFkdApjd3fhuO0nV9lChoBmgJaA9DCJGBPLt8O2FAlIaUUpRoFU3oA2gWR0CmN4KG1x82dX2UKGgGaAloD0MIWONsOgIIY0CUhpRSlGgVTegDaBZHQKY7BWU8mrt1fZQoaAZoCWgPQwjo+j4cJDRIQJSGlFKUaBVL+GgWR0CmPIR9oexOdX2UKGgGaAloD0MIsDxIT5FXYECUhpRSlGgVTegDaBZHQKY9GofjjrB1fZQoaAZoCWgPQwh2OLpKd1RkQJSGlFKUaBVN6ANoFkdApj0pbW3BpHV9lChoBmgJaA9DCOeNk8I8YGBAlIaUUpRoFU3oA2gWR0CmQHnpSrHVdX2UKGgGaAloD0MI1GLwMG0EY0CUhpRSlGgVTegDaBZHQKZAm4+bExZ1fZQoaAZoCWgPQwg3GOqwwgpjQJSGlFKUaBVN6ANoFkdApkfYHmig03V9lChoBmgJaA9DCE6c3O9QK2BAlIaUUpRoFU3oA2gWR0CmTc0Xxe9jdX2UKGgGaAloD0MIAaYMHNA0ZECUhpRSlGgVTegDaBZHQKZOlDrqt5l1fZQoaAZoCWgPQwiJQsu6/+tjQJSGlFKUaBVN6ANoFkdAplAMG3WnTHV9lChoBmgJaA9DCGrAIOnTgWJAlIaUUpRoFU3oA2gWR0CmUGRmseXBdX2UKGgGaAloD0MIfAxWnGpIYUCUhpRSlGgVTegDaBZHQKZQemx+rlx1fZQoaAZoCWgPQwgeqFMe3T1hQJSGlFKUaBVN6ANoFkdAplETsrupj3V9lChoBmgJaA9DCE8Cm3PwwGVAlIaUUpRoFU3oA2gWR0CmUm8c2itadX2UKGgGaAloD0MI0clS6/1nYECUhpRSlGgVTegDaBZHQKZUCIsyzol1fZQoaAZoCWgPQwgvwD469QRkQJSGlFKUaBVN6ANoFkdAplQU65oXbnV9lChoBmgJaA9DCHuFBfcDgWRAlIaUUpRoFU3oA2gWR0CmWAs3hn8LdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 170,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
rlander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0cf8db93b2962b88db1ec740385c528a7844418e5bffb39461789b78c526b6c
3
+ size 87865
rlander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a66f68da0f6b4d883090bbb0c6f066c752db52772dadcee8968bc6b202b875ce
3
+ size 43201
rlander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
rlander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0