--- base_model: meta-llama/Llama-3.2-1B-Instruct library_name: peft license: llama3.2 tags: - generated_from_trainer model-index: - name: Llama-3.2-1B-Instruct_v2 results: [] --- # Llama-3.2-1B-Instruct_v2 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4565 | 0.0333 | 100 | 0.4058 | | 0.3313 | 0.0667 | 200 | 0.3428 | | 0.3139 | 0.1 | 300 | 0.3192 | | 0.2903 | 0.1333 | 400 | 0.3034 | | 0.2639 | 0.1667 | 500 | 0.2944 | | 0.2688 | 0.2 | 600 | 0.2869 | | 0.3097 | 0.2333 | 700 | 0.2791 | | 0.2462 | 0.2667 | 800 | 0.2735 | | 0.3257 | 0.3 | 900 | 0.2684 | | 0.2738 | 0.3333 | 1000 | 0.2638 | | 0.2572 | 0.3667 | 1100 | 0.2598 | | 0.234 | 0.4 | 1200 | 0.2566 | | 0.2233 | 0.4333 | 1300 | 0.2537 | | 0.2996 | 0.4667 | 1400 | 0.2515 | | 0.2178 | 0.5 | 1500 | 0.2490 | | 0.2251 | 0.5333 | 1600 | 0.2470 | | 0.262 | 0.5667 | 1700 | 0.2450 | | 0.2683 | 0.6 | 1800 | 0.2430 | | 0.1966 | 0.6333 | 1900 | 0.2416 | | 0.2451 | 0.6667 | 2000 | 0.2403 | | 0.2247 | 0.7 | 2100 | 0.2393 | | 0.1865 | 0.7333 | 2200 | 0.2384 | | 0.2837 | 0.7667 | 2300 | 0.2378 | | 0.2312 | 0.8 | 2400 | 0.2371 | | 0.239 | 0.8333 | 2500 | 0.2365 | | 0.2064 | 0.8667 | 2600 | 0.2362 | | 0.208 | 0.9 | 2700 | 0.2358 | | 0.2588 | 0.9333 | 2800 | 0.2356 | | 0.2029 | 0.9667 | 2900 | 0.2356 | | 0.2404 | 1.0 | 3000 | 0.2356 | ### Framework versions - PEFT 0.13.2 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1