File size: 1,625 Bytes
78a993e
 
70b9cc1
c9e3846
 
 
 
 
81025b1
78a993e
 
 
 
 
 
81025b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Neopian-Diffusion

Stable Diffusion models, starting with [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5), trained on images extracted from gifs from https://www.neopets.com/funimages.phtml. CLIP ViT-B/32 (OpenAI) was used to filter the best matching frame of the GIF for every given caption/GIF pair. The frame with the minimum spherical distance was chosen and saved for training. In total this amounts to 1950 images around 100x100px. The DreamBooth models were finetuned at 448x448px on a Colab T4 with the term "low-resolution" concatenated onto 1/3 of prompts, to hopefully combat artifacting in the final results (see this link for a hypothesis from someone on Discord about using negative terms while training Textual Inversions https://cdn.discordapp.com/attachments/1008246088148463648/1041538692432527470/image.png).

Example chosen frame of GIF from CLIP
| Caption | Unprocessed GIF | Chosen Frame |
| --- | --- | --- |
| "yurble_baby_clap" | ![](https://images.neopets.com/template_images/yurble_baby_clap.gif) | ![](https://cdn.discordapp.com/attachments/1010693530181718146/1043310485413576794/yurble_baby_clap.jpg) |

### Training Details

The text encoder was trained along with the UNet at half precision for 15% of the total 8,000 steps (1,200 steps), and then the UNet was trained alone for the rest. I used a polynomial learning rate decay starting at 2e-6 (the default in fast-DreamBooth).


### Neopets Copyright Notice
"Don't forget, if you use these images on a non-Neopets page, you need to include our Copyright Notice." https://www.neopets.com/terms.phtml