import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from typing import Dict, List, Any class EndpointHandler(): def __init__(self, path=""): self.quant = quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16) self.model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", quantization_config=self.quant, trust_remote_code=True) self.tokenizer = AutoTokenizer.from_pretrained(path) self.pipeline = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer) def __call__(self, data: Dict[str, Dict[str, Any]]) -> Any: inputs = data["inputs"]["msg"] parameters = data["args"] prediction = self.pipeline(inputs, **parameters) output = prediction[0]['generated_text'] return output