File size: 2,275 Bytes
2b6befc
6100d84
 
 
3f6d0f8
6100d84
 
 
 
3f6d0f8
 
 
 
 
 
7dc027b
3f6d0f8
6100d84
3f6d0f8
2b6befc
3f6d0f8
30079e1
 
46814f8
6100d84
3f6d0f8
6100d84
30079e1
 
 
 
 
 
3f6d0f8
30079e1
3f6d0f8
30079e1
3f6d0f8
30079e1
3f6d0f8
30079e1
3f6d0f8
30079e1
3f6d0f8
30079e1
3f6d0f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30079e1
 
 
 
 
 
 
 
 
 
 
 
3f6d0f8
 
30079e1
3f6d0f8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
language:
- pt
license: apache-2.0
tags:
- toxicity
- portuguese
- hate speech
- offensive language
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
base_model: neuralmind/bert-large-portuguese-cased
model-index:
- name: dougtrajano/toxic-comment-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dougtrajano/toxic-comment-classification

This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the OLID-BR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4102
- Accuracy: 0.8547
- F1: 0.8549
- Precision: 0.8669
- Recall: 0.8547

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3.255788747459486e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1993
- optimizer: Adam with betas=(0.8445637934160373,0.8338816842140165) and epsilon=2.527092625455385e-08
- lr_scheduler_type: linear
- num_epochs: 30
- label_smoothing_factor: 0.07158711257743958

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.4465        | 1.0   | 1408 | 0.4102          | 0.8547   | 0.8549 | 0.8669    | 0.8547 |
| 0.3839        | 2.0   | 2816 | 0.4814          | 0.8509   | 0.8497 | 0.8532    | 0.8509 |
| 0.3945        | 3.0   | 4224 | 0.6362          | 0.8002   | 0.7918 | 0.8258    | 0.8002 |
| 0.3643        | 4.0   | 5632 | 0.4961          | 0.8248   | 0.8211 | 0.8349    | 0.8248 |
| 0.3345        | 5.0   | 7040 | 0.5267          | 0.8528   | 0.8532 | 0.8570    | 0.8528 |
| 0.3053        | 6.0   | 8448 | 0.5902          | 0.8002   | 0.7911 | 0.8292    | 0.8002 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.10.2+cu113
- Datasets 2.9.0
- Tokenizers 0.13.2