File size: 2,152 Bytes
334de57
3b646df
 
 
9e6bee9
3b646df
 
 
 
9e6bee9
 
 
 
 
 
0333c13
9e6bee9
3b646df
9e6bee9
334de57
9e6bee9
329970e
 
07d6a9a
3b646df
9e6bee9
3b646df
329970e
 
 
 
 
 
9e6bee9
329970e
07d6a9a
329970e
07d6a9a
329970e
07d6a9a
329970e
07d6a9a
329970e
07d6a9a
329970e
9e6bee9
 
 
 
 
 
 
 
 
 
 
 
 
 
329970e
 
 
 
 
 
 
 
 
 
 
9e6bee9
 
f9b4e1c
9e6bee9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
language:
- pt
license: apache-2.0
tags:
- toxicity
- portuguese
- hate speech
- offensive language
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
base_model: neuralmind/bert-large-portuguese-cased
model-index:
- name: dougtrajano/toxicity-target-type-identification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dougtrajano/toxicity-target-type-identification

This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the OLID-BR dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4281
- Accuracy: 0.8002
- F1: 0.7986
- Precision: 0.7990
- Recall: 0.8002

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3.952388499692274e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1993
- optimizer: Adam with betas=(0.9944095815441554,0.8750000522553327) and epsilon=1.8526084265228802e-07
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log        | 1.0   | 355  | 0.7145          | 0.6903   | 0.7052 | 0.7528    | 0.6903 |
| 0.8011        | 2.0   | 710  | 0.9930          | 0.7928   | 0.7840 | 0.7835    | 0.7928 |
| 0.529         | 3.0   | 1065 | 1.4281          | 0.8002   | 0.7986 | 0.7990    | 0.8002 |
| 0.529         | 4.0   | 1420 | 1.6783          | 0.7727   | 0.7753 | 0.7788    | 0.7727 |
| 0.2706        | 5.0   | 1775 | 2.3904          | 0.7727   | 0.7683 | 0.7660    | 0.7727 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.10.2+cu113
- Datasets 2.9.0
- Tokenizers 0.13.2