dougtrajano commited on
Commit
d9739a9
1 Parent(s): c49c683

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -1
README.md CHANGED
@@ -1,3 +1,73 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: toxicity-type-detection
12
+ results: []
13
  ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # toxicity-type-detection
19
+
20
+ This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 2.2337
23
+ - Accuracy: 0.4214
24
+ - F1: 0.7645
25
+ - Precision: 0.8180
26
+ - Recall: 0.7230
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 7.044186985160909e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 1993
49
+ - optimizer: Adam with betas=(0.9339215524915885,0.9916979096990963) and epsilon=3.4435900142455904e-07
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 30
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
+ | 1.1107 | 1.0 | 534 | 0.9282 | 0.2823 | 0.6762 | 0.7419 | 0.6630 |
58
+ | 0.8974 | 2.0 | 1068 | 0.8605 | 0.2754 | 0.6324 | 0.7759 | 0.5913 |
59
+ | 0.7436 | 3.0 | 1602 | 1.0151 | 0.3150 | 0.6870 | 0.7828 | 0.6512 |
60
+ | 0.644 | 4.0 | 2136 | 1.1455 | 0.3519 | 0.7114 | 0.7857 | 0.6865 |
61
+ | 0.4704 | 5.0 | 2670 | 1.4827 | 0.3387 | 0.7109 | 0.7814 | 0.6843 |
62
+ | 0.3316 | 6.0 | 3204 | 1.6275 | 0.3602 | 0.7217 | 0.8020 | 0.6816 |
63
+ | 0.2717 | 7.0 | 3738 | 2.2337 | 0.4214 | 0.7645 | 0.8180 | 0.7230 |
64
+ | 0.231 | 8.0 | 4272 | 2.0275 | 0.3651 | 0.7194 | 0.8271 | 0.6528 |
65
+ | 0.197 | 9.0 | 4806 | 1.9878 | 0.4033 | 0.7409 | 0.8240 | 0.6812 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.26.0
71
+ - Pytorch 1.10.2+cu113
72
+ - Datasets 2.9.0
73
+ - Tokenizers 0.13.2