Akshay Ballal commited on
Commit
3c88bc0
1 Parent(s): 07f12d3

add embed-anything to readme (#138)

Browse files
Files changed (1) hide show
  1. README.md +3 -1
README.md CHANGED
@@ -222,7 +222,8 @@ Several community projects and ressources have been developed around ColPali to
222
  |---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
223
  | Byaldi | [`Byaldi`](https://github.com/AnswerDotAI/byaldi) is [RAGatouille](https://github.com/AnswerDotAI/RAGatouille)'s equivalent for ColPali, leveraging the `colpali-engine` package to facilitate indexing and storing embeddings. |
224
  | PyVespa | [`PyVespa`](https://pyvespa.readthedocs.io/en/latest/examples/colpali-document-retrieval-vision-language-models-cloud.html) allows interaction with [Vespa](https://vespa.ai/), a production-grade vector database, with detailed ColPali support. |
225
- | Candle | [Candle](https://github.com/huggingface/candle/tree/main/candle-examples/examples/colpali) enables ColPali inference with an efficient ML framework for Rust. |
 
226
  | DocAI | [DocAI](https://github.com/PragmaticMachineLearning/docai) uses ColPali with GPT-4o and Langchain to extract structured information from documents. |
227
  | VARAG | [VARAG](https://github.com/adithya-s-k/VARAG) uses ColPali in a vision-only and a hybrid RAG pipeline. |
228
  | ColBERT Live! | [`ColBERT Live!`](https://github.com/jbellis/colbert-live/) enables ColPali usage with vector databases supporting large datasets, compression, and non-vector predicates. |
@@ -241,6 +242,7 @@ Several community projects and ressources have been developed around ColPali to
241
  | Finance Report Analysis with ColPali and Gemini | [Jaykumaran (LearnOpenCV)](https://github.com/spmallick/learnopencv/tree/master/Multimodal-RAG-with-ColPali-Gemini) |
242
  | Multimodal Retrieval-Augmented Generation (RAG) with Document Retrieval (ColPali) and Vision Language Models (VLMs) | [Sergio Paniego](https://huggingface.co/learn/cookbook/multimodal_rag_using_document_retrieval_and_vlms) |
243
  | Document Similarity Search with ColPali | [Frank Sommers](https://colab.research.google.com/github/fsommers/documentai/blob/main/Document_Similarity_with_ColPali_0_2_2_version.ipynb) |
 
244
 
245
  ### Other resources
246
 
 
222
  |---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
223
  | Byaldi | [`Byaldi`](https://github.com/AnswerDotAI/byaldi) is [RAGatouille](https://github.com/AnswerDotAI/RAGatouille)'s equivalent for ColPali, leveraging the `colpali-engine` package to facilitate indexing and storing embeddings. |
224
  | PyVespa | [`PyVespa`](https://pyvespa.readthedocs.io/en/latest/examples/colpali-document-retrieval-vision-language-models-cloud.html) allows interaction with [Vespa](https://vespa.ai/), a production-grade vector database, with detailed ColPali support. |
225
+ | Candle | [Candle](https://github.com/huggingface/candle/tree/main/candle-examples/examples/colpali) enables ColPali inference with an efficient ML framework for Rust.
226
+ | EmbedAnything | [`EmbedAnything`](https://github.com/StarlightSearch/EmbedAnything) Allows end-to-end ColPali inference with both Candle and ONNX backend. |
227
  | DocAI | [DocAI](https://github.com/PragmaticMachineLearning/docai) uses ColPali with GPT-4o and Langchain to extract structured information from documents. |
228
  | VARAG | [VARAG](https://github.com/adithya-s-k/VARAG) uses ColPali in a vision-only and a hybrid RAG pipeline. |
229
  | ColBERT Live! | [`ColBERT Live!`](https://github.com/jbellis/colbert-live/) enables ColPali usage with vector databases supporting large datasets, compression, and non-vector predicates. |
 
242
  | Finance Report Analysis with ColPali and Gemini | [Jaykumaran (LearnOpenCV)](https://github.com/spmallick/learnopencv/tree/master/Multimodal-RAG-with-ColPali-Gemini) |
243
  | Multimodal Retrieval-Augmented Generation (RAG) with Document Retrieval (ColPali) and Vision Language Models (VLMs) | [Sergio Paniego](https://huggingface.co/learn/cookbook/multimodal_rag_using_document_retrieval_and_vlms) |
244
  | Document Similarity Search with ColPali | [Frank Sommers](https://colab.research.google.com/github/fsommers/documentai/blob/main/Document_Similarity_with_ColPali_0_2_2_version.ipynb) |
245
+ | End-to-end ColPali inference with EmbedAnything | [Akshay Ballal (EmbedAnything)](https://colab.research.google.com/drive/1-Eiaw8wMm8I1n69N1uKOHkmpw3yV22w8?usp=sharing)
246
 
247
  ### Other resources
248