a2c-PandaReachDense-v2 / config.json
dreamboat26's picture
Initial commit
7f546a3
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c31aafca950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c31aafcc680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691171412483944234, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2M7nPrnfBL1W//k+2M7nPrnfBL1W//k+2M7nPrnfBL1W//k+2M7nPrnfBL1W//k+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+EpovTXAuD9EI4c/oMXHvlJuBT9W/Ac/2Y5GP1ja8j633IQ/DEqQvw//WT8Dow2+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADYzuc+ud8EvVb/+T4g6Xs8Ln+Cu09UFDvYzuc+ud8EvVb/+T4g6Xs8Ln+Cu09UFDvYzuc+ud8EvVb/+T4g6Xs8Ln+Cu09UFDvYzuc+ud8EvVb/+T4g6Xs8Ln+Cu09UFDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.45274997 -0.03243992 0.48827618]\n [ 0.45274997 -0.03243992 0.48827618]\n [ 0.45274997 -0.03243992 0.48827618]\n [ 0.45274997 -0.03243992 0.48827618]]", "desired_goal": "[[-0.05671212 1.4433657 1.0557637 ]\n [-0.39017963 0.5212146 0.5311941 ]\n [ 0.7756172 0.47432208 1.0379857 ]\n [-1.1272597 0.85154814 -0.13831715]]", "observation": "[[ 0.45274997 -0.03243992 0.48827618 0.01537541 -0.00398245 0.00226333]\n [ 0.45274997 -0.03243992 0.48827618 0.01537541 -0.00398245 0.00226333]\n [ 0.45274997 -0.03243992 0.48827618 0.01537541 -0.00398245 0.00226333]\n [ 0.45274997 -0.03243992 0.48827618 0.01537541 -0.00398245 0.00226333]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAD+MAPauDFD5cS5k+M9uYPeij5b0NYCs9ersIvGkpFb6fZTY+vY9Dvfvt2b38MzA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03146654 0.14503352 0.29940307]\n [ 0.07463684 -0.11212903 0.04183965]\n [-0.00834548 -0.14566578 0.17812203]\n [-0.0477445 -0.10641094 0.1720733 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3xtDAHDs7L+UhpRSlIwBbJRLMowBdJRHQKjYglUp/gB1fZQoaAZoCWgPQwiXAz3UtuH/v5SGlFKUaBVLMmgWR0Co2CRuKoAGdX2UKGgGaAloD0MID7kZbsCn+7+UhpRSlGgVSzJoFkdAqNfG5Fw1i3V9lChoBmgJaA9DCLQdU3dlF/S/lIaUUpRoFUsyaBZHQKjXa4kNWlx1fZQoaAZoCWgPQwjM8QpETwoAwJSGlFKUaBVLMmgWR0Co2aww0wajdX2UKGgGaAloD0MI7blMTYLXBsCUhpRSlGgVSzJoFkdAqNlOQdS2pnV9lChoBmgJaA9DCB3J5T+knwLAlIaUUpRoFUsyaBZHQKjY8KKpDNR1fZQoaAZoCWgPQwh40y07xB8EwJSGlFKUaBVLMmgWR0Co2JU3GXHBdX2UKGgGaAloD0MI6xnCMcse87+UhpRSlGgVSzJoFkdAqNraGBWge3V9lChoBmgJaA9DCBHEeTiBCQXAlIaUUpRoFUsyaBZHQKjafPZZjhF1fZQoaAZoCWgPQwjYKOs3ExMOwJSGlFKUaBVLMmgWR0Co2iBHkLhKdX2UKGgGaAloD0MIQgddwqG3AMCUhpRSlGgVSzJoFkdAqNnFf3N9pnV9lChoBmgJaA9DCI4iaw2ldvK/lIaUUpRoFUsyaBZHQKjcDJ6IFeR1fZQoaAZoCWgPQwjIXBlUG9z/v5SGlFKUaBVLMmgWR0Co266TOgQIdX2UKGgGaAloD0MIC0W6n1PwDMCUhpRSlGgVSzJoFkdAqNtQ9mpVCHV9lChoBmgJaA9DCMEBLV3BdvW/lIaUUpRoFUsyaBZHQKja9YywfQt1fZQoaAZoCWgPQwimKJfGL7wGwJSGlFKUaBVLMmgWR0Co3TyOq//OdX2UKGgGaAloD0MIiPGaV3VWAMCUhpRSlGgVSzJoFkdAqNzekN4JNXV9lChoBmgJaA9DCOKS407p4Pa/lIaUUpRoFUsyaBZHQKjcgP0Zm7J1fZQoaAZoCWgPQwiv0t11NsQJwJSGlFKUaBVLMmgWR0Co3CWrOqvNdX2UKGgGaAloD0MIWCB6Uib197+UhpRSlGgVSzJoFkdAqN7N2eQMhHV9lChoBmgJaA9DCOf9f5wwoQPAlIaUUpRoFUsyaBZHQKjecN4qwyJ1fZQoaAZoCWgPQwhp4h3gSUv5v5SGlFKUaBVLMmgWR0Co3hQ9A5aNdX2UKGgGaAloD0MIfm/Tn/3oBsCUhpRSlGgVSzJoFkdAqN25+z+m33V9lChoBmgJaA9DCFXa4hqfif2/lIaUUpRoFUsyaBZHQKjgy+/xlQN1fZQoaAZoCWgPQwgAHHv2XCbuv5SGlFKUaBVLMmgWR0Co4G6isXBQdX2UKGgGaAloD0MITKd1G9T+B8CUhpRSlGgVSzJoFkdAqOAR++dsi3V9lChoBmgJaA9DCEvpmV5ijAvAlIaUUpRoFUsyaBZHQKjft4IKMNt1fZQoaAZoCWgPQwhXsI14slv4v5SGlFKUaBVLMmgWR0Co4sAAAAAAdX2UKGgGaAloD0MIUYTU7exrDMCUhpRSlGgVSzJoFkdAqOJjpaA4GXV9lChoBmgJaA9DCG0Dd6BO+fa/lIaUUpRoFUsyaBZHQKjiBuIhyKh1fZQoaAZoCWgPQwhgdHlzuJYCwJSGlFKUaBVLMmgWR0Co4awWFev7dX2UKGgGaAloD0MIipC6nX2FCsCUhpRSlGgVSzJoFkdAqOS3Z9NN8HV9lChoBmgJaA9DCIbkZOJWwQPAlIaUUpRoFUsyaBZHQKjkWna37UJ1fZQoaAZoCWgPQwgk8fJ0rogEwJSGlFKUaBVLMmgWR0Co4/3ocJdCdX2UKGgGaAloD0MIz57L1CS48b+UhpRSlGgVSzJoFkdAqOOjdWQwK3V9lChoBmgJaA9DCDqvsUtUbwbAlIaUUpRoFUsyaBZHQKjmS7K7qY91fZQoaAZoCWgPQwg5XoHoSVnxv5SGlFKUaBVLMmgWR0Co5e3H7xd6dX2UKGgGaAloD0MIOL2L9+N2DcCUhpRSlGgVSzJoFkdAqOWQM8YAKnV9lChoBmgJaA9DCOC9o8aEmAbAlIaUUpRoFUsyaBZHQKjlNYDDCP91fZQoaAZoCWgPQwiBIhYx7PD7v5SGlFKUaBVLMmgWR0Co54Cliz9kdX2UKGgGaAloD0MI9+Y3TDQoBMCUhpRSlGgVSzJoFkdAqOcircTJyXV9lChoBmgJaA9DCJ+tg4O9iQnAlIaUUpRoFUsyaBZHQKjmxPBSDRN1fZQoaAZoCWgPQwgWE5uPa0MFwJSGlFKUaBVLMmgWR0Co5ml8gIQfdX2UKGgGaAloD0MIv30dOGdE9L+UhpRSlGgVSzJoFkdAqOirbzshPnV9lChoBmgJaA9DCKKYvAFmfvK/lIaUUpRoFUsyaBZHQKjoTXzUZvV1fZQoaAZoCWgPQwhpboWwGosGwJSGlFKUaBVLMmgWR0Co5+/SH/LldX2UKGgGaAloD0MIUgyQaALFA8CUhpRSlGgVSzJoFkdAqOeUzAN5MXV9lChoBmgJaA9DCKgbKPBO/v+/lIaUUpRoFUsyaBZHQKjp41kUbkx1fZQoaAZoCWgPQwj18dB3t3L6v5SGlFKUaBVLMmgWR0Co6YVgQYk3dX2UKGgGaAloD0MI5X/yd+/o8r+UhpRSlGgVSzJoFkdAqOknu3MINXV9lChoBmgJaA9DCMVwdQDEnfa/lIaUUpRoFUsyaBZHQKjozE87p3Z1fZQoaAZoCWgPQwjsavKU1VQEwJSGlFKUaBVLMmgWR0Co6xMvysjndX2UKGgGaAloD0MIEmxc/64vDcCUhpRSlGgVSzJoFkdAqOq1LJ0W/XV9lChoBmgJaA9DCIIeatswiv+/lIaUUpRoFUsyaBZHQKjqV4lhPTJ1fZQoaAZoCWgPQwg9DK1OznAAwJSGlFKUaBVLMmgWR0Co6fwyRB/rdX2UKGgGaAloD0MIGLX7VYCvAcCUhpRSlGgVSzJoFkdAqOxIOz6acHV9lChoBmgJaA9DCOHvF7Ml6/2/lIaUUpRoFUsyaBZHQKjr6j7ALzB1fZQoaAZoCWgPQwg/48KBkKwCwJSGlFKUaBVLMmgWR0Co64yfcvdudX2UKGgGaAloD0MIxcpo5PPqAMCUhpRSlGgVSzJoFkdAqOsxM6BAfXV9lChoBmgJaA9DCI7LuKmBJvW/lIaUUpRoFUsyaBZHQKjtgK4QSSN1fZQoaAZoCWgPQwjP86eN6pQFwJSGlFKUaBVLMmgWR0Co7SKu0TlDdX2UKGgGaAloD0MIjs2OVN95AMCUhpRSlGgVSzJoFkdAqOzE/D+BH3V9lChoBmgJaA9DCHGuYYbGk/G/lIaUUpRoFUsyaBZHQKjsaY3vQWx1fZQoaAZoCWgPQwi1p+Sc2EP0v5SGlFKUaBVLMmgWR0Co7rDW07bMdX2UKGgGaAloD0MIPs40YftJ7L+UhpRSlGgVSzJoFkdAqO5S8Yht+HV9lChoBmgJaA9DCOLoKt1d5/i/lIaUUpRoFUsyaBZHQKjt9Vqesgd1fZQoaAZoCWgPQwhy/iYUIiD1v5SGlFKUaBVLMmgWR0Co7Zn9m6GydX2UKGgGaAloD0MIlPYGX5iM/L+UhpRSlGgVSzJoFkdAqO/kQVbiZXV9lChoBmgJaA9DCOHvF7MlCwDAlIaUUpRoFUsyaBZHQKjvhkZJkG11fZQoaAZoCWgPQwjmWx/WG3UMwJSGlFKUaBVLMmgWR0Co7yiW/rSmdX2UKGgGaAloD0MIM8SxLm4j6L+UhpRSlGgVSzJoFkdAqO7NFOO803V9lChoBmgJaA9DCJW5+UZ0LwLAlIaUUpRoFUsyaBZHQKjxEb3oLXt1fZQoaAZoCWgPQwiwjA3d7A/rv5SGlFKUaBVLMmgWR0Co8LPrGBFvdX2UKGgGaAloD0MIBHP0+L3N87+UhpRSlGgVSzJoFkdAqPBWVVxS53V9lChoBmgJaA9DCEC/79+8uPS/lIaUUpRoFUsyaBZHQKjv+vHtF8Z1fZQoaAZoCWgPQwj0bcFSXQD1v5SGlFKUaBVLMmgWR0Co8ji35N48dX2UKGgGaAloD0MIh4bFqGvt9L+UhpRSlGgVSzJoFkdAqPHarq+rVHV9lChoBmgJaA9DCOnVAKWhBgTAlIaUUpRoFUsyaBZHQKjxfPhybQV1fZQoaAZoCWgPQwhg6Xx4lsAAwJSGlFKUaBVLMmgWR0Co8SGjj7yhdX2UKGgGaAloD0MIl+ZWCKux+b+UhpRSlGgVSzJoFkdAqPNmAEt/WnV9lChoBmgJaA9DCB+F61G4nu2/lIaUUpRoFUsyaBZHQKjzB+1Bt1p1fZQoaAZoCWgPQwj0bcFSXUD1v5SGlFKUaBVLMmgWR0Co8qo5o4+9dX2UKGgGaAloD0MI3nTLDvFP+L+UhpRSlGgVSzJoFkdAqPJO1c+qznV9lChoBmgJaA9DCBX/d0SFav+/lIaUUpRoFUsyaBZHQKj0iiml67d1fZQoaAZoCWgPQwgapyGq8McBwJSGlFKUaBVLMmgWR0Co9CxKQJXydX2UKGgGaAloD0MIol9bP/1nAsCUhpRSlGgVSzJoFkdAqPPOoDPnjnV9lChoBmgJaA9DCO1l22lrRPy/lIaUUpRoFUsyaBZHQKjzczHjp9t1fZQoaAZoCWgPQwiBWaFI99MAwJSGlFKUaBVLMmgWR0Co9baj3225dX2UKGgGaAloD0MIWqDdIcWABcCUhpRSlGgVSzJoFkdAqPVYrrgO0HV9lChoBmgJaA9DCGCsb2By4/e/lIaUUpRoFUsyaBZHQKj0+vyLAHp1fZQoaAZoCWgPQwhxkXu6uuPtv5SGlFKUaBVLMmgWR0Co9J+TeO4odX2UKGgGaAloD0MIQtE8gEU++7+UhpRSlGgVSzJoFkdAqPbfN/vv0HV9lChoBmgJaA9DCPNy2H3HsPy/lIaUUpRoFUsyaBZHQKj2gWk8A7x1fZQoaAZoCWgPQwho6nWLwHgGwJSGlFKUaBVLMmgWR0Co9iPhqCYkdX2UKGgGaAloD0MI4fCCiNS057+UhpRSlGgVSzJoFkdAqPXIcDKYA3V9lChoBmgJaA9DCH11VaAWA+q/lIaUUpRoFUsyaBZHQKj4B9JBgNR1fZQoaAZoCWgPQwimm8QgsDL1v5SGlFKUaBVLMmgWR0Co96nlfZ27dX2UKGgGaAloD0MIsFjDRe5JAMCUhpRSlGgVSzJoFkdAqPdMOI68x3V9lChoBmgJaA9DCCKI83ACE/G/lIaUUpRoFUsyaBZHQKj28LYPGyZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}