dreamboat26
commited on
Commit
•
7f546a3
1
Parent(s):
ad98af2
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +11 -11
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.37 +/- 0.62
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99aecfd34ad6fb0b1461340c45969a816e14b3f447d479370e608a3de9efb7f9
|
3 |
+
size 107819
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -19,12 +19,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[ 0.
|
38 |
-
"desired_goal": "[[-0.
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[ 0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1691171412483944234,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2M7nPrnfBL1W//k+2M7nPrnfBL1W//k+2M7nPrnfBL1W//k+2M7nPrnfBL1W//k+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+EpovTXAuD9EI4c/oMXHvlJuBT9W/Ac/2Y5GP1ja8j633IQ/DEqQvw//WT8Dow2+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADYzuc+ud8EvVb/+T4g6Xs8Ln+Cu09UFDvYzuc+ud8EvVb/+T4g6Xs8Ln+Cu09UFDvYzuc+ud8EvVb/+T4g6Xs8Ln+Cu09UFDvYzuc+ud8EvVb/+T4g6Xs8Ln+Cu09UFDuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.45274997 -0.03243992 0.48827618]\n [ 0.45274997 -0.03243992 0.48827618]\n [ 0.45274997 -0.03243992 0.48827618]\n [ 0.45274997 -0.03243992 0.48827618]]",
|
38 |
+
"desired_goal": "[[-0.05671212 1.4433657 1.0557637 ]\n [-0.39017963 0.5212146 0.5311941 ]\n [ 0.7756172 0.47432208 1.0379857 ]\n [-1.1272597 0.85154814 -0.13831715]]",
|
39 |
+
"observation": "[[ 0.45274997 -0.03243992 0.48827618 0.01537541 -0.00398245 0.00226333]\n [ 0.45274997 -0.03243992 0.48827618 0.01537541 -0.00398245 0.00226333]\n [ 0.45274997 -0.03243992 0.48827618 0.01537541 -0.00398245 0.00226333]\n [ 0.45274997 -0.03243992 0.48827618 0.01537541 -0.00398245 0.00226333]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAD+MAPauDFD5cS5k+M9uYPeij5b0NYCs9ersIvGkpFb6fZTY+vY9Dvfvt2b38MzA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.03146654 0.14503352 0.29940307]\n [ 0.07463684 -0.11212903 0.04183965]\n [-0.00834548 -0.14566578 0.17812203]\n [-0.0477445 -0.10641094 0.1720733 ]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3xtDAHDs7L+UhpRSlIwBbJRLMowBdJRHQKjYglUp/gB1fZQoaAZoCWgPQwiXAz3UtuH/v5SGlFKUaBVLMmgWR0Co2CRuKoAGdX2UKGgGaAloD0MID7kZbsCn+7+UhpRSlGgVSzJoFkdAqNfG5Fw1i3V9lChoBmgJaA9DCLQdU3dlF/S/lIaUUpRoFUsyaBZHQKjXa4kNWlx1fZQoaAZoCWgPQwjM8QpETwoAwJSGlFKUaBVLMmgWR0Co2aww0wajdX2UKGgGaAloD0MI7blMTYLXBsCUhpRSlGgVSzJoFkdAqNlOQdS2pnV9lChoBmgJaA9DCB3J5T+knwLAlIaUUpRoFUsyaBZHQKjY8KKpDNR1fZQoaAZoCWgPQwh40y07xB8EwJSGlFKUaBVLMmgWR0Co2JU3GXHBdX2UKGgGaAloD0MI6xnCMcse87+UhpRSlGgVSzJoFkdAqNraGBWge3V9lChoBmgJaA9DCBHEeTiBCQXAlIaUUpRoFUsyaBZHQKjafPZZjhF1fZQoaAZoCWgPQwjYKOs3ExMOwJSGlFKUaBVLMmgWR0Co2iBHkLhKdX2UKGgGaAloD0MIQgddwqG3AMCUhpRSlGgVSzJoFkdAqNnFf3N9pnV9lChoBmgJaA9DCI4iaw2ldvK/lIaUUpRoFUsyaBZHQKjcDJ6IFeR1fZQoaAZoCWgPQwjIXBlUG9z/v5SGlFKUaBVLMmgWR0Co266TOgQIdX2UKGgGaAloD0MIC0W6n1PwDMCUhpRSlGgVSzJoFkdAqNtQ9mpVCHV9lChoBmgJaA9DCMEBLV3BdvW/lIaUUpRoFUsyaBZHQKja9YywfQt1fZQoaAZoCWgPQwimKJfGL7wGwJSGlFKUaBVLMmgWR0Co3TyOq//OdX2UKGgGaAloD0MIiPGaV3VWAMCUhpRSlGgVSzJoFkdAqNzekN4JNXV9lChoBmgJaA9DCOKS407p4Pa/lIaUUpRoFUsyaBZHQKjcgP0Zm7J1fZQoaAZoCWgPQwiv0t11NsQJwJSGlFKUaBVLMmgWR0Co3CWrOqvNdX2UKGgGaAloD0MIWCB6Uib197+UhpRSlGgVSzJoFkdAqN7N2eQMhHV9lChoBmgJaA9DCOf9f5wwoQPAlIaUUpRoFUsyaBZHQKjecN4qwyJ1fZQoaAZoCWgPQwhp4h3gSUv5v5SGlFKUaBVLMmgWR0Co3hQ9A5aNdX2UKGgGaAloD0MIfm/Tn/3oBsCUhpRSlGgVSzJoFkdAqN25+z+m33V9lChoBmgJaA9DCFXa4hqfif2/lIaUUpRoFUsyaBZHQKjgy+/xlQN1fZQoaAZoCWgPQwgAHHv2XCbuv5SGlFKUaBVLMmgWR0Co4G6isXBQdX2UKGgGaAloD0MITKd1G9T+B8CUhpRSlGgVSzJoFkdAqOAR++dsi3V9lChoBmgJaA9DCEvpmV5ijAvAlIaUUpRoFUsyaBZHQKjft4IKMNt1fZQoaAZoCWgPQwhXsI14slv4v5SGlFKUaBVLMmgWR0Co4sAAAAAAdX2UKGgGaAloD0MIUYTU7exrDMCUhpRSlGgVSzJoFkdAqOJjpaA4GXV9lChoBmgJaA9DCG0Dd6BO+fa/lIaUUpRoFUsyaBZHQKjiBuIhyKh1fZQoaAZoCWgPQwhgdHlzuJYCwJSGlFKUaBVLMmgWR0Co4awWFev7dX2UKGgGaAloD0MIipC6nX2FCsCUhpRSlGgVSzJoFkdAqOS3Z9NN8HV9lChoBmgJaA9DCIbkZOJWwQPAlIaUUpRoFUsyaBZHQKjkWna37UJ1fZQoaAZoCWgPQwgk8fJ0rogEwJSGlFKUaBVLMmgWR0Co4/3ocJdCdX2UKGgGaAloD0MIz57L1CS48b+UhpRSlGgVSzJoFkdAqOOjdWQwK3V9lChoBmgJaA9DCDqvsUtUbwbAlIaUUpRoFUsyaBZHQKjmS7K7qY91fZQoaAZoCWgPQwg5XoHoSVnxv5SGlFKUaBVLMmgWR0Co5e3H7xd6dX2UKGgGaAloD0MIOL2L9+N2DcCUhpRSlGgVSzJoFkdAqOWQM8YAKnV9lChoBmgJaA9DCOC9o8aEmAbAlIaUUpRoFUsyaBZHQKjlNYDDCP91fZQoaAZoCWgPQwiBIhYx7PD7v5SGlFKUaBVLMmgWR0Co54Cliz9kdX2UKGgGaAloD0MI9+Y3TDQoBMCUhpRSlGgVSzJoFkdAqOcircTJyXV9lChoBmgJaA9DCJ+tg4O9iQnAlIaUUpRoFUsyaBZHQKjmxPBSDRN1fZQoaAZoCWgPQwgWE5uPa0MFwJSGlFKUaBVLMmgWR0Co5ml8gIQfdX2UKGgGaAloD0MIv30dOGdE9L+UhpRSlGgVSzJoFkdAqOirbzshPnV9lChoBmgJaA9DCKKYvAFmfvK/lIaUUpRoFUsyaBZHQKjoTXzUZvV1fZQoaAZoCWgPQwhpboWwGosGwJSGlFKUaBVLMmgWR0Co5+/SH/LldX2UKGgGaAloD0MIUgyQaALFA8CUhpRSlGgVSzJoFkdAqOeUzAN5MXV9lChoBmgJaA9DCKgbKPBO/v+/lIaUUpRoFUsyaBZHQKjp41kUbkx1fZQoaAZoCWgPQwj18dB3t3L6v5SGlFKUaBVLMmgWR0Co6YVgQYk3dX2UKGgGaAloD0MI5X/yd+/o8r+UhpRSlGgVSzJoFkdAqOknu3MINXV9lChoBmgJaA9DCMVwdQDEnfa/lIaUUpRoFUsyaBZHQKjozE87p3Z1fZQoaAZoCWgPQwjsavKU1VQEwJSGlFKUaBVLMmgWR0Co6xMvysjndX2UKGgGaAloD0MIEmxc/64vDcCUhpRSlGgVSzJoFkdAqOq1LJ0W/XV9lChoBmgJaA9DCIIeatswiv+/lIaUUpRoFUsyaBZHQKjqV4lhPTJ1fZQoaAZoCWgPQwg9DK1OznAAwJSGlFKUaBVLMmgWR0Co6fwyRB/rdX2UKGgGaAloD0MIGLX7VYCvAcCUhpRSlGgVSzJoFkdAqOxIOz6acHV9lChoBmgJaA9DCOHvF7Ml6/2/lIaUUpRoFUsyaBZHQKjr6j7ALzB1fZQoaAZoCWgPQwg/48KBkKwCwJSGlFKUaBVLMmgWR0Co64yfcvdudX2UKGgGaAloD0MIxcpo5PPqAMCUhpRSlGgVSzJoFkdAqOsxM6BAfXV9lChoBmgJaA9DCI7LuKmBJvW/lIaUUpRoFUsyaBZHQKjtgK4QSSN1fZQoaAZoCWgPQwjP86eN6pQFwJSGlFKUaBVLMmgWR0Co7SKu0TlDdX2UKGgGaAloD0MIjs2OVN95AMCUhpRSlGgVSzJoFkdAqOzE/D+BH3V9lChoBmgJaA9DCHGuYYbGk/G/lIaUUpRoFUsyaBZHQKjsaY3vQWx1fZQoaAZoCWgPQwi1p+Sc2EP0v5SGlFKUaBVLMmgWR0Co7rDW07bMdX2UKGgGaAloD0MIPs40YftJ7L+UhpRSlGgVSzJoFkdAqO5S8Yht+HV9lChoBmgJaA9DCOLoKt1d5/i/lIaUUpRoFUsyaBZHQKjt9Vqesgd1fZQoaAZoCWgPQwhy/iYUIiD1v5SGlFKUaBVLMmgWR0Co7Zn9m6GydX2UKGgGaAloD0MIlPYGX5iM/L+UhpRSlGgVSzJoFkdAqO/kQVbiZXV9lChoBmgJaA9DCOHvF7MlCwDAlIaUUpRoFUsyaBZHQKjvhkZJkG11fZQoaAZoCWgPQwjmWx/WG3UMwJSGlFKUaBVLMmgWR0Co7yiW/rSmdX2UKGgGaAloD0MIM8SxLm4j6L+UhpRSlGgVSzJoFkdAqO7NFOO803V9lChoBmgJaA9DCJW5+UZ0LwLAlIaUUpRoFUsyaBZHQKjxEb3oLXt1fZQoaAZoCWgPQwiwjA3d7A/rv5SGlFKUaBVLMmgWR0Co8LPrGBFvdX2UKGgGaAloD0MIBHP0+L3N87+UhpRSlGgVSzJoFkdAqPBWVVxS53V9lChoBmgJaA9DCEC/79+8uPS/lIaUUpRoFUsyaBZHQKjv+vHtF8Z1fZQoaAZoCWgPQwj0bcFSXQD1v5SGlFKUaBVLMmgWR0Co8ji35N48dX2UKGgGaAloD0MIh4bFqGvt9L+UhpRSlGgVSzJoFkdAqPHarq+rVHV9lChoBmgJaA9DCOnVAKWhBgTAlIaUUpRoFUsyaBZHQKjxfPhybQV1fZQoaAZoCWgPQwhg6Xx4lsAAwJSGlFKUaBVLMmgWR0Co8SGjj7yhdX2UKGgGaAloD0MIl+ZWCKux+b+UhpRSlGgVSzJoFkdAqPNmAEt/WnV9lChoBmgJaA9DCB+F61G4nu2/lIaUUpRoFUsyaBZHQKjzB+1Bt1p1fZQoaAZoCWgPQwj0bcFSXUD1v5SGlFKUaBVLMmgWR0Co8qo5o4+9dX2UKGgGaAloD0MI3nTLDvFP+L+UhpRSlGgVSzJoFkdAqPJO1c+qznV9lChoBmgJaA9DCBX/d0SFav+/lIaUUpRoFUsyaBZHQKj0iiml67d1fZQoaAZoCWgPQwgapyGq8McBwJSGlFKUaBVLMmgWR0Co9CxKQJXydX2UKGgGaAloD0MIol9bP/1nAsCUhpRSlGgVSzJoFkdAqPPOoDPnjnV9lChoBmgJaA9DCO1l22lrRPy/lIaUUpRoFUsyaBZHQKjzczHjp9t1fZQoaAZoCWgPQwiBWaFI99MAwJSGlFKUaBVLMmgWR0Co9baj3225dX2UKGgGaAloD0MIWqDdIcWABcCUhpRSlGgVSzJoFkdAqPVYrrgO0HV9lChoBmgJaA9DCGCsb2By4/e/lIaUUpRoFUsyaBZHQKj0+vyLAHp1fZQoaAZoCWgPQwhxkXu6uuPtv5SGlFKUaBVLMmgWR0Co9J+TeO4odX2UKGgGaAloD0MIQtE8gEU++7+UhpRSlGgVSzJoFkdAqPbfN/vv0HV9lChoBmgJaA9DCPNy2H3HsPy/lIaUUpRoFUsyaBZHQKj2gWk8A7x1fZQoaAZoCWgPQwho6nWLwHgGwJSGlFKUaBVLMmgWR0Co9iPhqCYkdX2UKGgGaAloD0MI4fCCiNS057+UhpRSlGgVSzJoFkdAqPXIcDKYA3V9lChoBmgJaA9DCH11VaAWA+q/lIaUUpRoFUsyaBZHQKj4B9JBgNR1fZQoaAZoCWgPQwimm8QgsDL1v5SGlFKUaBVLMmgWR0Co96nlfZ27dX2UKGgGaAloD0MIsFjDRe5JAMCUhpRSlGgVSzJoFkdAqPdMOI68x3V9lChoBmgJaA9DCCKI83ACE/G/lIaUUpRoFUsyaBZHQKj28LYPGyZ1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 50000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44606
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9cd5f4428f27e9987fa11c9c56ef0bf6ddca0cd0006d26b959b4176ed298ad0
|
3 |
size 44606
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 45886
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c030d503f29621923f5fe0f96f455db0ddbd3a28dd4abaccc482f1548ac78968
|
3 |
size 45886
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c31aafca950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c31aafcc680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 700000, "_total_timesteps": 700000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691168622837061441, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAo6wHPwa6g74beis/o6wHPwa6g74beis/o6wHPwa6g74beis/o6wHPwa6g74beis/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeZZQvx7Ys78xXAw/VY9Nv8d0Hj/ugL6/ozBGPqytDr/eHws/k3ZvPmmUk74tt4+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACjrAc/BrqDvht6Kz/arIc9x3DIvIBxXT2jrAc/BrqDvht6Kz/arIc9x3DIvIBxXT2jrAc/BrqDvht6Kz/arIc9x3DIvIBxXT2jrAc/BrqDvht6Kz/arIc9x3DIvIBxXT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.529978 -0.25727862 0.66983193]\n [ 0.529978 -0.25727862 0.66983193]\n [ 0.529978 -0.25727862 0.66983193]\n [ 0.529978 -0.25727862 0.66983193]]", "desired_goal": "[[-0.81479603 -1.4050329 0.5482817 ]\n [-0.8029683 0.6189694 -1.4883096 ]\n [ 0.19354491 -0.5573375 0.543455 ]\n [ 0.23385076 -0.28824165 -1.1227776 ]]", "observation": "[[ 0.529978 -0.25727862 0.66983193 0.06624766 -0.02446784 0.05406332]\n [ 0.529978 -0.25727862 0.66983193 0.06624766 -0.02446784 0.05406332]\n [ 0.529978 -0.25727862 0.66983193 0.06624766 -0.02446784 0.05406332]\n [ 0.529978 -0.25727862 0.66983193 0.06624766 -0.02446784 0.05406332]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5WZPPR/NoD0CClc+YNLkPVXF1r3QkCY+742gPfpBA752sio+apaove+aEz7ViHI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05063524 0.07851624 0.20999911]\n [ 0.11172938 -0.10486857 0.16266179]\n [ 0.07839572 -0.12818137 0.1666964 ]\n [-0.08231814 0.14414571 0.2368501 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvcRYpl+2MMCUhpRSlIwBbJRLMowBdJRHQKGCQMir1dx1fZQoaAZoCWgPQwgdIJijx1ciwJSGlFKUaBVLMmgWR0ChgfJD3M6jdX2UKGgGaAloD0MI8piByvhhQMCUhpRSlGgVSzJoFkdAoYGkth/iHnV9lChoBmgJaA9DCESKARJNgC7AlIaUUpRoFUsyaBZHQKGBWj3225R1fZQoaAZoCWgPQwhQN1DgncwkwJSGlFKUaBVLMmgWR0ChhBEfLcKxdX2UKGgGaAloD0MIZyeDo+StKMCUhpRSlGgVSzJoFkdAoYO/MbFS9HV9lChoBmgJaA9DCK9cb5up8DjAlIaUUpRoFUsyaBZHQKGDcL9/BnB1fZQoaAZoCWgPQwj1aKon81szwJSGlFKUaBVLMmgWR0ChgyQn6VMVdX2UKGgGaAloD0MIvYqMDkjCLMCUhpRSlGgVSzJoFkdAoYWp1DBuXXV9lChoBmgJaA9DCGWNeohGZyDAlIaUUpRoFUsyaBZHQKGFWAVfu1F1fZQoaAZoCWgPQwgP1CmPbownwJSGlFKUaBVLMmgWR0ChhQlNcnmadX2UKGgGaAloD0MIj8cMVMaPJcCUhpRSlGgVSzJoFkdAoYS8EA5q/XV9lChoBmgJaA9DCNNQo5BkvifAlIaUUpRoFUsyaBZHQKGHP8pkPMB1fZQoaAZoCWgPQwhioGtfQFcswJSGlFKUaBVLMmgWR0Chhu3MINVjdX2UKGgGaAloD0MIIsK/CBoDNMCUhpRSlGgVSzJoFkdAoYafTXrdFnV9lChoBmgJaA9DCK+w4H7AsyTAlIaUUpRoFUsyaBZHQKGGUxGDtgN1fZQoaAZoCWgPQwh40y07xNcxwJSGlFKUaBVLMmgWR0ChiNh7u2JBdX2UKGgGaAloD0MIKxa/KaxENsCUhpRSlGgVSzJoFkdAoYiGuRs/IXV9lChoBmgJaA9DCBaJCWr4bjTAlIaUUpRoFUsyaBZHQKGIOAxzq8l1fZQoaAZoCWgPQwixi6IHPjIwwJSGlFKUaBVLMmgWR0Chh+q2KEWZdX2UKGgGaAloD0MILhud81NkLMCUhpRSlGgVSzJoFkdAoYn9Z5iVjnV9lChoBmgJaA9DCA7Xag97oR/AlIaUUpRoFUsyaBZHQKGJqr+5vtN1fZQoaAZoCWgPQwimttRBXvc0wJSGlFKUaBVLMmgWR0ChiVtix3V1dX2UKGgGaAloD0MImDJwQEufKMCUhpRSlGgVSzJoFkdAoYkNg6U7jnV9lChoBmgJaA9DCN1hE5m5JDHAlIaUUpRoFUsyaBZHQKGK8rzXjEN1fZQoaAZoCWgPQwhv9Zz0vikrwJSGlFKUaBVLMmgWR0ChiqApBomHdX2UKGgGaAloD0MIQl4PJsXLNcCUhpRSlGgVSzJoFkdAoYpQxzq8lHV9lChoBmgJaA9DCBWqm4u/iTXAlIaUUpRoFUsyaBZHQKGKAskIHC51fZQoaAZoCWgPQwjcRgN4C/g0wJSGlFKUaBVLMmgWR0Chi/2IGhVVdX2UKGgGaAloD0MIwR9+/nvIO8CUhpRSlGgVSzJoFkdAoYurROUMX3V9lChoBmgJaA9DCJIlcyzvpjHAlIaUUpRoFUsyaBZHQKGLW+N96Tp1fZQoaAZoCWgPQwjuk6MAUSwxwJSGlFKUaBVLMmgWR0Chiw4SQHRkdX2UKGgGaAloD0MIuRyvQPSkKsCUhpRSlGgVSzJoFkdAoYz+fK6nSHV9lChoBmgJaA9DCAT+8PPfDzHAlIaUUpRoFUsyaBZHQKGMrAFgUlB1fZQoaAZoCWgPQwjMJyuGqzczwJSGlFKUaBVLMmgWR0ChjFyZ0CA+dX2UKGgGaAloD0MIeIAnLVxaOcCUhpRSlGgVSzJoFkdAoYwOoxYaHnV9lChoBmgJaA9DCCpvRzgtQDDAlIaUUpRoFUsyaBZHQKGN+q5LAYZ1fZQoaAZoCWgPQwhG0QMfg3UmwJSGlFKUaBVLMmgWR0ChjagD7qIKdX2UKGgGaAloD0MIoUs49BbHI8CUhpRSlGgVSzJoFkdAoY1YrvsqrnV9lChoBmgJaA9DCAXB49u7PizAlIaUUpRoFUsyaBZHQKGNCr6LwWp1fZQoaAZoCWgPQwhbtABtq3ExwJSGlFKUaBVLMmgWR0ChjvZBC2MLdX2UKGgGaAloD0MIO1J95xc9JMCUhpRSlGgVSzJoFkdAoY6jposZpHV9lChoBmgJaA9DCMRCrWne6SrAlIaUUpRoFUsyaBZHQKGOVHjIaLp1fZQoaAZoCWgPQwhFniRdM4ElwJSGlFKUaBVLMmgWR0Chjgah6By0dX2UKGgGaAloD0MIrp6T3jfeFsCUhpRSlGgVSzJoFkdAoZAGOU+s5nV9lChoBmgJaA9DCGzLgLOUYDHAlIaUUpRoFUsyaBZHQKGPs4x1xKh1fZQoaAZoCWgPQwiz7ElgcxYzwJSGlFKUaBVLMmgWR0Chj2RJd0JXdX2UKGgGaAloD0MIxAYLJ2lGLsCUhpRSlGgVSzJoFkdAoY8WT5ftyHV9lChoBmgJaA9DCME4uHTM2RzAlIaUUpRoFUsyaBZHQKGRAseXAuZ1fZQoaAZoCWgPQwgCSkONQtIxwJSGlFKUaBVLMmgWR0ChkLAo5PuYdX2UKGgGaAloD0MIv51EhH/BLsCUhpRSlGgVSzJoFkdAoZBg4lyBCnV9lChoBmgJaA9DCBy2LcpsEB3AlIaUUpRoFUsyaBZHQKGQEug6EJ11fZQoaAZoCWgPQwg6HjNQGS8kwJSGlFKUaBVLMmgWR0ChkfrPD50sdX2UKGgGaAloD0MIibZj6q6ELMCUhpRSlGgVSzJoFkdAoZGoHAymAXV9lChoBmgJaA9DCM2ueysSUyHAlIaUUpRoFUsyaBZHQKGRWLgGbCt1fZQoaAZoCWgPQwj+gAcGEMIywJSGlFKUaBVLMmgWR0ChkQrjghr4dX2UKGgGaAloD0MI7Z3RViUhI8CUhpRSlGgVSzJoFkdAoZMVuBMBZXV9lChoBmgJaA9DCBH+RdCYiSHAlIaUUpRoFUsyaBZHQKGSwyFfzBh1fZQoaAZoCWgPQwjyzTY3piNBwJSGlFKUaBVLMmgWR0ChknPF3pwCdX2UKGgGaAloD0MIPUm6ZvI9JcCUhpRSlGgVSzJoFkdAoZIl5hScb3V9lChoBmgJaA9DCFDicyfY5ybAlIaUUpRoFUsyaBZHQKGUL7Hhjvx1fZQoaAZoCWgPQwjkgcgiTfQ/wJSGlFKUaBVLMmgWR0Chk91v2oNvdX2UKGgGaAloD0MIgIEgQIbeMsCUhpRSlGgVSzJoFkdAoZON/FzdUXV9lChoBmgJaA9DCHOBy2PNjDnAlIaUUpRoFUsyaBZHQKGTQVzIV/N1fZQoaAZoCWgPQwiALa9cb4cxwJSGlFKUaBVLMmgWR0ChlSNmthd/dX2UKGgGaAloD0MIMIFbd/P8McCUhpRSlGgVSzJoFkdAoZTQ5tFa0XV9lChoBmgJaA9DCEt1AS8zhC3AlIaUUpRoFUsyaBZHQKGUgX/o7mx1fZQoaAZoCWgPQwgX00z3OikqwJSGlFKUaBVLMmgWR0ChlDOCXhOydX2UKGgGaAloD0MIAHUDBd6ZJMCUhpRSlGgVSzJoFkdAoZZAISlFdHV9lChoBmgJaA9DCGoX00z3FjLAlIaUUpRoFUsyaBZHQKGV7XQtz0Z1fZQoaAZoCWgPQwgXKv9aXi0wwJSGlFKUaBVLMmgWR0ChlZ4MOPNndX2UKGgGaAloD0MIUFYMVweINcCUhpRSlGgVSzJoFkdAoZVQpx3mm3V9lChoBmgJaA9DCDLk2HqGSC7AlIaUUpRoFUsyaBZHQKGXmlv60pp1fZQoaAZoCWgPQwj7y+7Jw7onwJSGlFKUaBVLMmgWR0Chl0izLOiWdX2UKGgGaAloD0MIuTMTDOeqIcCUhpRSlGgVSzJoFkdAoZb56dDpknV9lChoBmgJaA9DCCv8Gd6sMSrAlIaUUpRoFUsyaBZHQKGWrL+PzWh1fZQoaAZoCWgPQwh+HqM884IwwJSGlFKUaBVLMmgWR0ChmTnQID5kdX2UKGgGaAloD0MI2qoksg+qI8CUhpRSlGgVSzJoFkdAoZjn0TURWnV9lChoBmgJaA9DCKA1P/7SKifAlIaUUpRoFUsyaBZHQKGYmTL4etF1fZQoaAZoCWgPQwh8JvvnaQggwJSGlFKUaBVLMmgWR0ChmExC6YmcdX2UKGgGaAloD0MI176AXrh7OMCUhpRSlGgVSzJoFkdAoZrtkYoAn3V9lChoBmgJaA9DCKjixi3m/yPAlIaUUpRoFUsyaBZHQKGam/PgNw11fZQoaAZoCWgPQwjSx3xAoJMjwJSGlFKUaBVLMmgWR0Chmk7cO9WZdX2UKGgGaAloD0MICp3X2CV6JMCUhpRSlGgVSzJoFkdAoZoBoZhrnHV9lChoBmgJaA9DCBNJ9DKKzTbAlIaUUpRoFUsyaBZHQKGcfGBnSOR1fZQoaAZoCWgPQwioHmlwW4sjwJSGlFKUaBVLMmgWR0ChnCpTuOS4dX2UKGgGaAloD0MIFAZlGk36McCUhpRSlGgVSzJoFkdAoZvbpRoAXHV9lChoBmgJaA9DCIF8CRUctijAlIaUUpRoFUsyaBZHQKGbjmuDBdl1fZQoaAZoCWgPQwgAUwYOaOEjwJSGlFKUaBVLMmgWR0ChnhjCYTkAdX2UKGgGaAloD0MI7fXuj/fOM8CUhpRSlGgVSzJoFkdAoZ3G2b5M13V9lChoBmgJaA9DCCtsBrgg6y3AlIaUUpRoFUsyaBZHQKGdeBzV+Zx1fZQoaAZoCWgPQwg2zNB4IqAwwJSGlFKUaBVLMmgWR0ChnSrWqcVhdX2UKGgGaAloD0MIznADPj/kK8CUhpRSlGgVSzJoFkdAoZ8gWN3np3V9lChoBmgJaA9DCKyowTQM7y3AlIaUUpRoFUsyaBZHQKGezbJOnEV1fZQoaAZoCWgPQwhSuvQvSVUnwJSGlFKUaBVLMmgWR0Chnn5Gz8gqdX2UKGgGaAloD0MIC5qWWBntK8CUhpRSlGgVSzJoFkdAoZ4wRZlnRXV9lChoBmgJaA9DCN8ZbVUSOSLAlIaUUpRoFUsyaBZHQKGgGenQ6ZJ1fZQoaAZoCWgPQwim0HmNXSIjwJSGlFKUaBVLMmgWR0Chn8d4eLeidX2UKGgGaAloD0MIrWnecYqeKsCUhpRSlGgVSzJoFkdAoZ94Nwzch3V9lChoBmgJaA9DCG9m9KPh0DXAlIaUUpRoFUsyaBZHQKGfKkbgjyF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 35000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c31aafca950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c31aafcc680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691171412483944234, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2M7nPrnfBL1W//k+2M7nPrnfBL1W//k+2M7nPrnfBL1W//k+2M7nPrnfBL1W//k+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+EpovTXAuD9EI4c/oMXHvlJuBT9W/Ac/2Y5GP1ja8j633IQ/DEqQvw//WT8Dow2+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADYzuc+ud8EvVb/+T4g6Xs8Ln+Cu09UFDvYzuc+ud8EvVb/+T4g6Xs8Ln+Cu09UFDvYzuc+ud8EvVb/+T4g6Xs8Ln+Cu09UFDvYzuc+ud8EvVb/+T4g6Xs8Ln+Cu09UFDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.45274997 -0.03243992 0.48827618]\n [ 0.45274997 -0.03243992 0.48827618]\n [ 0.45274997 -0.03243992 0.48827618]\n [ 0.45274997 -0.03243992 0.48827618]]", "desired_goal": "[[-0.05671212 1.4433657 1.0557637 ]\n [-0.39017963 0.5212146 0.5311941 ]\n [ 0.7756172 0.47432208 1.0379857 ]\n [-1.1272597 0.85154814 -0.13831715]]", "observation": "[[ 0.45274997 -0.03243992 0.48827618 0.01537541 -0.00398245 0.00226333]\n [ 0.45274997 -0.03243992 0.48827618 0.01537541 -0.00398245 0.00226333]\n [ 0.45274997 -0.03243992 0.48827618 0.01537541 -0.00398245 0.00226333]\n [ 0.45274997 -0.03243992 0.48827618 0.01537541 -0.00398245 0.00226333]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAD+MAPauDFD5cS5k+M9uYPeij5b0NYCs9ersIvGkpFb6fZTY+vY9Dvfvt2b38MzA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03146654 0.14503352 0.29940307]\n [ 0.07463684 -0.11212903 0.04183965]\n [-0.00834548 -0.14566578 0.17812203]\n [-0.0477445 -0.10641094 0.1720733 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3xtDAHDs7L+UhpRSlIwBbJRLMowBdJRHQKjYglUp/gB1fZQoaAZoCWgPQwiXAz3UtuH/v5SGlFKUaBVLMmgWR0Co2CRuKoAGdX2UKGgGaAloD0MID7kZbsCn+7+UhpRSlGgVSzJoFkdAqNfG5Fw1i3V9lChoBmgJaA9DCLQdU3dlF/S/lIaUUpRoFUsyaBZHQKjXa4kNWlx1fZQoaAZoCWgPQwjM8QpETwoAwJSGlFKUaBVLMmgWR0Co2aww0wajdX2UKGgGaAloD0MI7blMTYLXBsCUhpRSlGgVSzJoFkdAqNlOQdS2pnV9lChoBmgJaA9DCB3J5T+knwLAlIaUUpRoFUsyaBZHQKjY8KKpDNR1fZQoaAZoCWgPQwh40y07xB8EwJSGlFKUaBVLMmgWR0Co2JU3GXHBdX2UKGgGaAloD0MI6xnCMcse87+UhpRSlGgVSzJoFkdAqNraGBWge3V9lChoBmgJaA9DCBHEeTiBCQXAlIaUUpRoFUsyaBZHQKjafPZZjhF1fZQoaAZoCWgPQwjYKOs3ExMOwJSGlFKUaBVLMmgWR0Co2iBHkLhKdX2UKGgGaAloD0MIQgddwqG3AMCUhpRSlGgVSzJoFkdAqNnFf3N9pnV9lChoBmgJaA9DCI4iaw2ldvK/lIaUUpRoFUsyaBZHQKjcDJ6IFeR1fZQoaAZoCWgPQwjIXBlUG9z/v5SGlFKUaBVLMmgWR0Co266TOgQIdX2UKGgGaAloD0MIC0W6n1PwDMCUhpRSlGgVSzJoFkdAqNtQ9mpVCHV9lChoBmgJaA9DCMEBLV3BdvW/lIaUUpRoFUsyaBZHQKja9YywfQt1fZQoaAZoCWgPQwimKJfGL7wGwJSGlFKUaBVLMmgWR0Co3TyOq//OdX2UKGgGaAloD0MIiPGaV3VWAMCUhpRSlGgVSzJoFkdAqNzekN4JNXV9lChoBmgJaA9DCOKS407p4Pa/lIaUUpRoFUsyaBZHQKjcgP0Zm7J1fZQoaAZoCWgPQwiv0t11NsQJwJSGlFKUaBVLMmgWR0Co3CWrOqvNdX2UKGgGaAloD0MIWCB6Uib197+UhpRSlGgVSzJoFkdAqN7N2eQMhHV9lChoBmgJaA9DCOf9f5wwoQPAlIaUUpRoFUsyaBZHQKjecN4qwyJ1fZQoaAZoCWgPQwhp4h3gSUv5v5SGlFKUaBVLMmgWR0Co3hQ9A5aNdX2UKGgGaAloD0MIfm/Tn/3oBsCUhpRSlGgVSzJoFkdAqN25+z+m33V9lChoBmgJaA9DCFXa4hqfif2/lIaUUpRoFUsyaBZHQKjgy+/xlQN1fZQoaAZoCWgPQwgAHHv2XCbuv5SGlFKUaBVLMmgWR0Co4G6isXBQdX2UKGgGaAloD0MITKd1G9T+B8CUhpRSlGgVSzJoFkdAqOAR++dsi3V9lChoBmgJaA9DCEvpmV5ijAvAlIaUUpRoFUsyaBZHQKjft4IKMNt1fZQoaAZoCWgPQwhXsI14slv4v5SGlFKUaBVLMmgWR0Co4sAAAAAAdX2UKGgGaAloD0MIUYTU7exrDMCUhpRSlGgVSzJoFkdAqOJjpaA4GXV9lChoBmgJaA9DCG0Dd6BO+fa/lIaUUpRoFUsyaBZHQKjiBuIhyKh1fZQoaAZoCWgPQwhgdHlzuJYCwJSGlFKUaBVLMmgWR0Co4awWFev7dX2UKGgGaAloD0MIipC6nX2FCsCUhpRSlGgVSzJoFkdAqOS3Z9NN8HV9lChoBmgJaA9DCIbkZOJWwQPAlIaUUpRoFUsyaBZHQKjkWna37UJ1fZQoaAZoCWgPQwgk8fJ0rogEwJSGlFKUaBVLMmgWR0Co4/3ocJdCdX2UKGgGaAloD0MIz57L1CS48b+UhpRSlGgVSzJoFkdAqOOjdWQwK3V9lChoBmgJaA9DCDqvsUtUbwbAlIaUUpRoFUsyaBZHQKjmS7K7qY91fZQoaAZoCWgPQwg5XoHoSVnxv5SGlFKUaBVLMmgWR0Co5e3H7xd6dX2UKGgGaAloD0MIOL2L9+N2DcCUhpRSlGgVSzJoFkdAqOWQM8YAKnV9lChoBmgJaA9DCOC9o8aEmAbAlIaUUpRoFUsyaBZHQKjlNYDDCP91fZQoaAZoCWgPQwiBIhYx7PD7v5SGlFKUaBVLMmgWR0Co54Cliz9kdX2UKGgGaAloD0MI9+Y3TDQoBMCUhpRSlGgVSzJoFkdAqOcircTJyXV9lChoBmgJaA9DCJ+tg4O9iQnAlIaUUpRoFUsyaBZHQKjmxPBSDRN1fZQoaAZoCWgPQwgWE5uPa0MFwJSGlFKUaBVLMmgWR0Co5ml8gIQfdX2UKGgGaAloD0MIv30dOGdE9L+UhpRSlGgVSzJoFkdAqOirbzshPnV9lChoBmgJaA9DCKKYvAFmfvK/lIaUUpRoFUsyaBZHQKjoTXzUZvV1fZQoaAZoCWgPQwhpboWwGosGwJSGlFKUaBVLMmgWR0Co5+/SH/LldX2UKGgGaAloD0MIUgyQaALFA8CUhpRSlGgVSzJoFkdAqOeUzAN5MXV9lChoBmgJaA9DCKgbKPBO/v+/lIaUUpRoFUsyaBZHQKjp41kUbkx1fZQoaAZoCWgPQwj18dB3t3L6v5SGlFKUaBVLMmgWR0Co6YVgQYk3dX2UKGgGaAloD0MI5X/yd+/o8r+UhpRSlGgVSzJoFkdAqOknu3MINXV9lChoBmgJaA9DCMVwdQDEnfa/lIaUUpRoFUsyaBZHQKjozE87p3Z1fZQoaAZoCWgPQwjsavKU1VQEwJSGlFKUaBVLMmgWR0Co6xMvysjndX2UKGgGaAloD0MIEmxc/64vDcCUhpRSlGgVSzJoFkdAqOq1LJ0W/XV9lChoBmgJaA9DCIIeatswiv+/lIaUUpRoFUsyaBZHQKjqV4lhPTJ1fZQoaAZoCWgPQwg9DK1OznAAwJSGlFKUaBVLMmgWR0Co6fwyRB/rdX2UKGgGaAloD0MIGLX7VYCvAcCUhpRSlGgVSzJoFkdAqOxIOz6acHV9lChoBmgJaA9DCOHvF7Ml6/2/lIaUUpRoFUsyaBZHQKjr6j7ALzB1fZQoaAZoCWgPQwg/48KBkKwCwJSGlFKUaBVLMmgWR0Co64yfcvdudX2UKGgGaAloD0MIxcpo5PPqAMCUhpRSlGgVSzJoFkdAqOsxM6BAfXV9lChoBmgJaA9DCI7LuKmBJvW/lIaUUpRoFUsyaBZHQKjtgK4QSSN1fZQoaAZoCWgPQwjP86eN6pQFwJSGlFKUaBVLMmgWR0Co7SKu0TlDdX2UKGgGaAloD0MIjs2OVN95AMCUhpRSlGgVSzJoFkdAqOzE/D+BH3V9lChoBmgJaA9DCHGuYYbGk/G/lIaUUpRoFUsyaBZHQKjsaY3vQWx1fZQoaAZoCWgPQwi1p+Sc2EP0v5SGlFKUaBVLMmgWR0Co7rDW07bMdX2UKGgGaAloD0MIPs40YftJ7L+UhpRSlGgVSzJoFkdAqO5S8Yht+HV9lChoBmgJaA9DCOLoKt1d5/i/lIaUUpRoFUsyaBZHQKjt9Vqesgd1fZQoaAZoCWgPQwhy/iYUIiD1v5SGlFKUaBVLMmgWR0Co7Zn9m6GydX2UKGgGaAloD0MIlPYGX5iM/L+UhpRSlGgVSzJoFkdAqO/kQVbiZXV9lChoBmgJaA9DCOHvF7MlCwDAlIaUUpRoFUsyaBZHQKjvhkZJkG11fZQoaAZoCWgPQwjmWx/WG3UMwJSGlFKUaBVLMmgWR0Co7yiW/rSmdX2UKGgGaAloD0MIM8SxLm4j6L+UhpRSlGgVSzJoFkdAqO7NFOO803V9lChoBmgJaA9DCJW5+UZ0LwLAlIaUUpRoFUsyaBZHQKjxEb3oLXt1fZQoaAZoCWgPQwiwjA3d7A/rv5SGlFKUaBVLMmgWR0Co8LPrGBFvdX2UKGgGaAloD0MIBHP0+L3N87+UhpRSlGgVSzJoFkdAqPBWVVxS53V9lChoBmgJaA9DCEC/79+8uPS/lIaUUpRoFUsyaBZHQKjv+vHtF8Z1fZQoaAZoCWgPQwj0bcFSXQD1v5SGlFKUaBVLMmgWR0Co8ji35N48dX2UKGgGaAloD0MIh4bFqGvt9L+UhpRSlGgVSzJoFkdAqPHarq+rVHV9lChoBmgJaA9DCOnVAKWhBgTAlIaUUpRoFUsyaBZHQKjxfPhybQV1fZQoaAZoCWgPQwhg6Xx4lsAAwJSGlFKUaBVLMmgWR0Co8SGjj7yhdX2UKGgGaAloD0MIl+ZWCKux+b+UhpRSlGgVSzJoFkdAqPNmAEt/WnV9lChoBmgJaA9DCB+F61G4nu2/lIaUUpRoFUsyaBZHQKjzB+1Bt1p1fZQoaAZoCWgPQwj0bcFSXUD1v5SGlFKUaBVLMmgWR0Co8qo5o4+9dX2UKGgGaAloD0MI3nTLDvFP+L+UhpRSlGgVSzJoFkdAqPJO1c+qznV9lChoBmgJaA9DCBX/d0SFav+/lIaUUpRoFUsyaBZHQKj0iiml67d1fZQoaAZoCWgPQwgapyGq8McBwJSGlFKUaBVLMmgWR0Co9CxKQJXydX2UKGgGaAloD0MIol9bP/1nAsCUhpRSlGgVSzJoFkdAqPPOoDPnjnV9lChoBmgJaA9DCO1l22lrRPy/lIaUUpRoFUsyaBZHQKjzczHjp9t1fZQoaAZoCWgPQwiBWaFI99MAwJSGlFKUaBVLMmgWR0Co9baj3225dX2UKGgGaAloD0MIWqDdIcWABcCUhpRSlGgVSzJoFkdAqPVYrrgO0HV9lChoBmgJaA9DCGCsb2By4/e/lIaUUpRoFUsyaBZHQKj0+vyLAHp1fZQoaAZoCWgPQwhxkXu6uuPtv5SGlFKUaBVLMmgWR0Co9J+TeO4odX2UKGgGaAloD0MIQtE8gEU++7+UhpRSlGgVSzJoFkdAqPbfN/vv0HV9lChoBmgJaA9DCPNy2H3HsPy/lIaUUpRoFUsyaBZHQKj2gWk8A7x1fZQoaAZoCWgPQwho6nWLwHgGwJSGlFKUaBVLMmgWR0Co9iPhqCYkdX2UKGgGaAloD0MI4fCCiNS057+UhpRSlGgVSzJoFkdAqPXIcDKYA3V9lChoBmgJaA9DCH11VaAWA+q/lIaUUpRoFUsyaBZHQKj4B9JBgNR1fZQoaAZoCWgPQwimm8QgsDL1v5SGlFKUaBVLMmgWR0Co96nlfZ27dX2UKGgGaAloD0MIsFjDRe5JAMCUhpRSlGgVSzJoFkdAqPdMOI68x3V9lChoBmgJaA9DCCKI83ACE/G/lIaUUpRoFUsyaBZHQKj28LYPGyZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.3704806768335402, "std_reward": 0.6150550134011171, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-04T18:43:40.949208"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3d3ca7234ff90cc30f08424bfec258d6e68ccaa78d145492be90b77536a847e
|
3 |
size 2387
|