dreaming-tree
commited on
Commit
•
c2e976f
1
Parent(s):
8459007
Hello world!
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 73.61 +/- 70.22
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f27f5878950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f27f58789e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f27f5878a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f27f5878b00>", "_build": "<function ActorCriticPolicy._build at 0x7f27f5878b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f27f5878c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f27f5878cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f27f5878d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f27f5878dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f27f5878e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f27f5878ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f27f58d31b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667901470898356340, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCguT2BmRA/CEyBvEUdhr7Tgqw8E6G6PQAAAAAAAAAA5hA7PY+aS7rCHo67SrOVtqnTJztYvgU2AACAPwAAgD8A7zm+KRN5vF5t7Lxg8ji70mvcPdJeFTwAAIA/AACAP1r76r3K50Y/5og6PXAGVr7ZoYS9s8pRPAAAAAAAAAAAZlsfvs9/Drzen5Q7bUwPOu0MZT1GIN66AACAPwAAgD9gbS4+4WqNObpEErrxcCu23Kc6PGnqKjkAAIA/AACAP+Zvmj2PO0w/wsCOvv5/Y77mhC29h9eAvgAAAAAAAAAA5tiAPVw3DrouN3G7c03btUtGm7snh446AACAPwAAgD+G7nG+u2qevCst9DmVwCM4N4wLPq/4E7kAAIA/AACAP+aUAL72GGs5wmzUOJJ+TbbVf/m7Bqn2twAAgD8AAIA/us5TvtfnPjw3E4G7O56FObrEyr3K+5s6AACAPwAAgD9mOgY9ru2SuvWNTrqtik82qD1quUjrbjkAAIA/AACAPwAyYTzL9jU/SlokvthhB75ARc+9KJjBvAAAAAAAAAAAmrtAPlTpobyF9EE8FAi2ulrFDb6+npC7AACAPwAAgD+aKX49AsQHP0Bof70EZCy+Nn6vu4zCuz0AAAAAAAAAABqLlj3DaSO6FUelO8Qmejh0YVA6Ys1RugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImNpSB3kRM0CUhpRSlIwBbJRN6AOMAXSUR0CBiUdhiLEUdX2UKGgGaAloD0MILPTBMjboU8CUhpRSlGgVTW8BaBZHQIGbFa6jFhp1fZQoaAZoCWgPQwjoZn+g3MZcQJSGlFKUaBVN6ANoFkdAgaFe8oQWe3V9lChoBmgJaA9DCA5lqIqpyVXAlIaUUpRoFU0gAWgWR0CBoZAxi5NHdX2UKGgGaAloD0MIk40HW+wiWECUhpRSlGgVTegDaBZHQIGiTOmixml1fZQoaAZoCWgPQwh6GjBI+rTav5SGlFKUaBVL12gWR0CBpvD6WPcSdX2UKGgGaAloD0MIM6g2OBFdS0CUhpRSlGgVTegDaBZHQIGnlLL6k691fZQoaAZoCWgPQwhf0hito3RQQJSGlFKUaBVN6ANoFkdAgaqjiOvMbHV9lChoBmgJaA9DCP6ZQXxg6lHAlIaUUpRoFU24AWgWR0CBtqfQKKHgdX2UKGgGaAloD0MI7ded7rwYaMCUhpRSlGgVTRMBaBZHQIG+IAOrhit1fZQoaAZoCWgPQwhRFr6+1mFfQJSGlFKUaBVN6ANoFkdAgcL86V+qi3V9lChoBmgJaA9DCB06Pe/GUhnAlIaUUpRoFU0rAWgWR0CB7cBFuvU0dX2UKGgGaAloD0MI0clS6/2gUECUhpRSlGgVTegDaBZHQIH/anFYMfB1fZQoaAZoCWgPQwiW6CyzCDxhQJSGlFKUaBVN6ANoFkdAggYZlFtsN3V9lChoBmgJaA9DCBzqd2FrKjZAlIaUUpRoFUv8aBZHQIIIYLiMo+h1fZQoaAZoCWgPQwgx0ova/edZQJSGlFKUaBVN6ANoFkdAgg5KLsKLKnV9lChoBmgJaA9DCB3k9WBSuVVAlIaUUpRoFU3oA2gWR0CCEXib2Dg7dX2UKGgGaAloD0MImus00lJnWUCUhpRSlGgVTegDaBZHQIIaxZfUnXx1fZQoaAZoCWgPQwh319mQfy5jQJSGlFKUaBVN6ANoFkdAgh9JqASWaHV9lChoBmgJaA9DCMjPRq6bUklAlIaUUpRoFU3oA2gWR0CCKcP07KaHdX2UKGgGaAloD0MIPPVIg9s+MsCUhpRSlGgVTR0BaBZHQIIwg6ZH/cZ1fZQoaAZoCWgPQwiAme/gp75gQJSGlFKUaBVN6ANoFkdAglYOjynUD3V9lChoBmgJaA9DCLeyRGeZy2VAlIaUUpRoFU3oA2gWR0CCVk6ErXlKdX2UKGgGaAloD0MIUWnEzD7/H8CUhpRSlGgVTegDaBZHQIJdWQlruYx1fZQoaAZoCWgPQwgAHHv2XNFhQJSGlFKUaBVN6ANoFkdAgl4zDGcWkHV9lChoBmgJaA9DCN4DdF/O3lxAlIaUUpRoFU3oA2gWR0CCYgJ8fFJhdX2UKGgGaAloD0MIVrjlIylXWUCUhpRSlGgVTegDaBZHQIJxHyNGViZ1fZQoaAZoCWgPQwjE7GXbacNAwJSGlFKUaBVL22gWR0CCfoC6H0sfdX2UKGgGaAloD0MItHOaBdpQVECUhpRSlGgVTegDaBZHQIJ/1BD5TIh1fZQoaAZoCWgPQwgnM95Weh5UQJSGlFKUaBVN6ANoFkdAgoVumaYu03V9lChoBmgJaA9DCK34hsJnjzhAlIaUUpRoFU3oA2gWR0CCvQLNwBHTdX2UKGgGaAloD0MIyf/k794wUECUhpRSlGgVTegDaBZHQILDf2Xb/Ot1fZQoaAZoCWgPQwi8lLpkHBZSQJSGlFKUaBVN6ANoFkdAgstME7nxKHV9lChoBmgJaA9DCCHkvP+PoFFAlIaUUpRoFU3oA2gWR0CCzlECvHLidX2UKGgGaAloD0MIeR7cnbUXQcCUhpRSlGgVTQgBaBZHQILSLsv7FbV1fZQoaAZoCWgPQwiLwcO0b4hRQJSGlFKUaBVN6ANoFkdAgtdlUyYXwnV9lChoBmgJaA9DCATJO4cyalJAlIaUUpRoFU3oA2gWR0CC3CVymygPdX2UKGgGaAloD0MI9l0R/G/CUUCUhpRSlGgVTegDaBZHQILm7di2Dxt1fZQoaAZoCWgPQwjko8UZQ65jQJSGlFKUaBVN6ANoFkdAgu1XlS0jT3V9lChoBmgJaA9DCEUtza0QolhAlIaUUpRoFU3oA2gWR0CDEPsIE8q4dX2UKGgGaAloD0MIrhBWY4lTZkCUhpRSlGgVTegDaBZHQIMROWUr08N1fZQoaAZoCWgPQwgbLJyk+eNfQJSGlFKUaBVN6ANoFkdAgxjAFPi1iXV9lChoBmgJaA9DCD/+0qI+VV9AlIaUUpRoFU3oA2gWR0CDHOMiKR+0dX2UKGgGaAloD0MI4/viUpVDX0CUhpRSlGgVTegDaBZHQIMthIxxkup1fZQoaAZoCWgPQwjcR25Nuv5gQJSGlFKUaBVN6ANoFkdAgzsv7vXsgXV9lChoBmgJaA9DCJseFJSil2FAlIaUUpRoFU3oA2gWR0CDPHUVBUrDdX2UKGgGaAloD0MIAKq4cYsZA8CUhpRSlGgVTRQBaBZHQINEkI7eVLV1fZQoaAZoCWgPQwgwndZtUDtjQJSGlFKUaBVNGgNoFkdAg0bHI6r/83V9lChoBmgJaA9DCFUX8DLDFF3AlIaUUpRoFU0PAWgWR0CDbZ9uP3i8dX2UKGgGaAloD0MIem6hK5FsYUCUhpRSlGgVTegDaBZHQIN5c7lq8Dl1fZQoaAZoCWgPQwjt8q0Pa3dgQJSGlFKUaBVN6ANoFkdAg3++On2qUHV9lChoBmgJaA9DCEPJ5NTOpVZAlIaUUpRoFU3oA2gWR0CDhyjk+5e7dX2UKGgGaAloD0MI6iXGMv1rY0CUhpRSlGgVTegDaBZHQIONw1m8M/h1fZQoaAZoCWgPQwj7zFmfcm9bQJSGlFKUaBVN6ANoFkdAg5LIcaOxS3V9lChoBmgJaA9DCMo0mlyMCV5AlIaUUpRoFU3oA2gWR0CDl42VmjCYdX2UKGgGaAloD0MISUkPQ6uqZUCUhpRSlGgVTYUCaBZHQIOYSUHIIWx1fZQoaAZoCWgPQwip2JjXER9CQJSGlFKUaBVN6ANoFkdAg6GiFTNt7HV9lChoBmgJaA9DCBTrVPkeGmNAlIaUUpRoFU3oA2gWR0CDqCsXizcAdX2UKGgGaAloD0MIKQZINIG6OsCUhpRSlGgVTTMBaBZHQIOwEEeQuEp1fZQoaAZoCWgPQwjnVDIA1BFlQJSGlFKUaBVNPwJoFkdAg7y50bLlm3V9lChoBmgJaA9DCOsB85CpoWNAlIaUUpRoFU2lA2gWR0CDv1q5byH3dX2UKGgGaAloD0MIR+f8FMenUUCUhpRSlGgVTegDaBZHQIPnhrP+n651fZQoaAZoCWgPQwhMUwQ4vXRaQJSGlFKUaBVN6ANoFkdAg/iZ57gKnnV9lChoBmgJaA9DCKLsLeV8MFVAlIaUUpRoFU3oA2gWR0CD+h/0dzXCdX2UKGgGaAloD0MINfEO8KSKUkCUhpRSlGgVTegDaBZHQIQDx6MR6GB1fZQoaAZoCWgPQwgbnl4pyyhdQJSGlFKUaBVN6ANoFkdAhAZYWDYh+3V9lChoBmgJaA9DCJDXg0nxFlZAlIaUUpRoFU3oA2gWR0CEO822G7BgdX2UKGgGaAloD0MIlNqLaDvSYECUhpRSlGgVTegDaBZHQIRClyvLX+V1fZQoaAZoCWgPQwjMCdrk8P5XQJSGlFKUaBVN6ANoFkdAhFK0L+glGHV9lChoBmgJaA9DCBOe0OtPPE9AlIaUUpRoFU3oA2gWR0CEWKzD4xk/dX2UKGgGaAloD0MIlSh7SzlUYkCUhpRSlGgVTegDaBZHQIRd4OFxn4B1fZQoaAZoCWgPQwhiMepaexlaQJSGlFKUaBVN6ANoFkdAhF67q6e5F3V9lChoBmgJaA9DCKgbKPBOwGlAlIaUUpRoFU17AWgWR0CEaM4PwuuidX2UKGgGaAloD0MIxjL9EvGYV0CUhpRSlGgVTegDaBZHQIRpaD5CWu51fZQoaAZoCWgPQwhZv5mYLlxXQJSGlFKUaBVN6ANoFkdAhG/U2UB4lnV9lChoBmgJaA9DCFsGnKVkG11AlIaUUpRoFU3oA2gWR0CEd7l+3H7xdX2UKGgGaAloD0MIPggB+RLhVkCUhpRSlGgVTegDaBZHQISDXOhTOxB1fZQoaAZoCWgPQwiT5Lm+D+lYQJSGlFKUaBVN6ANoFkdAhIWF7D2rXHV9lChoBmgJaA9DCO0RaoZU/l9AlIaUUpRoFU3oA2gWR0CEqEXXRPXTdX2UKGgGaAloD0MI3c6+8qD/akCUhpRSlGgVTRICaBZHQIS03X9R77d1fZQoaAZoCWgPQwhXzXNEvrtRQJSGlFKUaBVN6ANoFkdAhLcRgJC0GHV9lChoBmgJaA9DCEZ55uWw4VlAlIaUUpRoFU3oA2gWR0CEuE2BreqJdX2UKGgGaAloD0MIelORCmPYaECUhpRSlGgVTf8BaBZHQIS6EfaHsTp1fZQoaAZoCWgPQwhGQIUjyBphQJSGlFKUaBVN6ANoFkdAhL+pwsGxEHV9lChoBmgJaA9DCLQglPdxY1hAlIaUUpRoFU3oA2gWR0CE8/xUedTYdX2UKGgGaAloD0MI0/nwLEHuRECUhpRSlGgVTRkBaBZHQIT3p+QU5+91fZQoaAZoCWgPQwgst7QaErdZQJSGlFKUaBVN6ANoFkdAhPnmlZX+2nV9lChoBmgJaA9DCJrS+lsCrFFAlIaUUpRoFU3oA2gWR0CFB0Vlf7aadX2UKGgGaAloD0MIaM2PvzT4YUCUhpRSlGgVTegDaBZHQIUMNld1Mdt1fZQoaAZoCWgPQwjkTBO2n4hkQJSGlFKUaBVNJgNoFkdAhRAadtl7MXV9lChoBmgJaA9DCL6HS447TGBAlIaUUpRoFU3oA2gWR0CFELuKGcnWdX2UKGgGaAloD0MIOdOE7SfSWkCUhpRSlGgVTegDaBZHQIURc5sCT2Z1fZQoaAZoCWgPQwh6U5EK43xjQJSGlFKUaBVN6ANoFkdAhRnlVT72tnV9lChoBmgJaA9DCMUfRZ25YmNAlIaUUpRoFU3oA2gWR0CFNWDVYp2EdX2UKGgGaAloD0MIoRFsXH/aYkCUhpRSlGgVTegDaBZHQIU4DqMWGh51fZQoaAZoCWgPQwjjiSDOw2BcQJSGlFKUaBVN6ANoFkdAhXL1/DtPYXV9lChoBmgJaA9DCEeNCTGXhF1AlIaUUpRoFU3oA2gWR0CFdcEovzvrdX2UKGgGaAloD0MIoDL+fcZOVUCUhpRSlGgVTegDaBZHQIV3ILXtjTd1fZQoaAZoCWgPQwiSsdr8v1ZaQJSGlFKUaBVN6ANoFkdAhXkrUTcqOXV9lChoBmgJaA9DCNGxg0pcKFJAlIaUUpRoFU3oA2gWR0CFf/AB1cMWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56ab43c15e1e2ec7fc8e1d40704d63ce9ab810b071dd40e5093fea8a4a3f347c
|
3 |
+
size 147150
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f27f5878950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f27f58789e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f27f5878a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f27f5878b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f27f5878b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f27f5878c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f27f5878cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f27f5878d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f27f5878dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f27f5878e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f27f5878ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f27f58d31b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1667901470898356340,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCguT2BmRA/CEyBvEUdhr7Tgqw8E6G6PQAAAAAAAAAA5hA7PY+aS7rCHo67SrOVtqnTJztYvgU2AACAPwAAgD8A7zm+KRN5vF5t7Lxg8ji70mvcPdJeFTwAAIA/AACAP1r76r3K50Y/5og6PXAGVr7ZoYS9s8pRPAAAAAAAAAAAZlsfvs9/Drzen5Q7bUwPOu0MZT1GIN66AACAPwAAgD9gbS4+4WqNObpEErrxcCu23Kc6PGnqKjkAAIA/AACAP+Zvmj2PO0w/wsCOvv5/Y77mhC29h9eAvgAAAAAAAAAA5tiAPVw3DrouN3G7c03btUtGm7snh446AACAPwAAgD+G7nG+u2qevCst9DmVwCM4N4wLPq/4E7kAAIA/AACAP+aUAL72GGs5wmzUOJJ+TbbVf/m7Bqn2twAAgD8AAIA/us5TvtfnPjw3E4G7O56FObrEyr3K+5s6AACAPwAAgD9mOgY9ru2SuvWNTrqtik82qD1quUjrbjkAAIA/AACAPwAyYTzL9jU/SlokvthhB75ARc+9KJjBvAAAAAAAAAAAmrtAPlTpobyF9EE8FAi2ulrFDb6+npC7AACAPwAAgD+aKX49AsQHP0Bof70EZCy+Nn6vu4zCuz0AAAAAAAAAABqLlj3DaSO6FUelO8Qmejh0YVA6Ys1RugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImNpSB3kRM0CUhpRSlIwBbJRN6AOMAXSUR0CBiUdhiLEUdX2UKGgGaAloD0MILPTBMjboU8CUhpRSlGgVTW8BaBZHQIGbFa6jFhp1fZQoaAZoCWgPQwjoZn+g3MZcQJSGlFKUaBVN6ANoFkdAgaFe8oQWe3V9lChoBmgJaA9DCA5lqIqpyVXAlIaUUpRoFU0gAWgWR0CBoZAxi5NHdX2UKGgGaAloD0MIk40HW+wiWECUhpRSlGgVTegDaBZHQIGiTOmixml1fZQoaAZoCWgPQwh6GjBI+rTav5SGlFKUaBVL12gWR0CBpvD6WPcSdX2UKGgGaAloD0MIM6g2OBFdS0CUhpRSlGgVTegDaBZHQIGnlLL6k691fZQoaAZoCWgPQwhf0hito3RQQJSGlFKUaBVN6ANoFkdAgaqjiOvMbHV9lChoBmgJaA9DCP6ZQXxg6lHAlIaUUpRoFU24AWgWR0CBtqfQKKHgdX2UKGgGaAloD0MI7ded7rwYaMCUhpRSlGgVTRMBaBZHQIG+IAOrhit1fZQoaAZoCWgPQwhRFr6+1mFfQJSGlFKUaBVN6ANoFkdAgcL86V+qi3V9lChoBmgJaA9DCB06Pe/GUhnAlIaUUpRoFU0rAWgWR0CB7cBFuvU0dX2UKGgGaAloD0MI0clS6/2gUECUhpRSlGgVTegDaBZHQIH/anFYMfB1fZQoaAZoCWgPQwiW6CyzCDxhQJSGlFKUaBVN6ANoFkdAggYZlFtsN3V9lChoBmgJaA9DCBzqd2FrKjZAlIaUUpRoFUv8aBZHQIIIYLiMo+h1fZQoaAZoCWgPQwgx0ova/edZQJSGlFKUaBVN6ANoFkdAgg5KLsKLKnV9lChoBmgJaA9DCB3k9WBSuVVAlIaUUpRoFU3oA2gWR0CCEXib2Dg7dX2UKGgGaAloD0MImus00lJnWUCUhpRSlGgVTegDaBZHQIIaxZfUnXx1fZQoaAZoCWgPQwh319mQfy5jQJSGlFKUaBVN6ANoFkdAgh9JqASWaHV9lChoBmgJaA9DCMjPRq6bUklAlIaUUpRoFU3oA2gWR0CCKcP07KaHdX2UKGgGaAloD0MIPPVIg9s+MsCUhpRSlGgVTR0BaBZHQIIwg6ZH/cZ1fZQoaAZoCWgPQwiAme/gp75gQJSGlFKUaBVN6ANoFkdAglYOjynUD3V9lChoBmgJaA9DCLeyRGeZy2VAlIaUUpRoFU3oA2gWR0CCVk6ErXlKdX2UKGgGaAloD0MIUWnEzD7/H8CUhpRSlGgVTegDaBZHQIJdWQlruYx1fZQoaAZoCWgPQwgAHHv2XNFhQJSGlFKUaBVN6ANoFkdAgl4zDGcWkHV9lChoBmgJaA9DCN4DdF/O3lxAlIaUUpRoFU3oA2gWR0CCYgJ8fFJhdX2UKGgGaAloD0MIVrjlIylXWUCUhpRSlGgVTegDaBZHQIJxHyNGViZ1fZQoaAZoCWgPQwjE7GXbacNAwJSGlFKUaBVL22gWR0CCfoC6H0sfdX2UKGgGaAloD0MItHOaBdpQVECUhpRSlGgVTegDaBZHQIJ/1BD5TIh1fZQoaAZoCWgPQwgnM95Weh5UQJSGlFKUaBVN6ANoFkdAgoVumaYu03V9lChoBmgJaA9DCK34hsJnjzhAlIaUUpRoFU3oA2gWR0CCvQLNwBHTdX2UKGgGaAloD0MIyf/k794wUECUhpRSlGgVTegDaBZHQILDf2Xb/Ot1fZQoaAZoCWgPQwi8lLpkHBZSQJSGlFKUaBVN6ANoFkdAgstME7nxKHV9lChoBmgJaA9DCCHkvP+PoFFAlIaUUpRoFU3oA2gWR0CCzlECvHLidX2UKGgGaAloD0MIeR7cnbUXQcCUhpRSlGgVTQgBaBZHQILSLsv7FbV1fZQoaAZoCWgPQwiLwcO0b4hRQJSGlFKUaBVN6ANoFkdAgtdlUyYXwnV9lChoBmgJaA9DCATJO4cyalJAlIaUUpRoFU3oA2gWR0CC3CVymygPdX2UKGgGaAloD0MI9l0R/G/CUUCUhpRSlGgVTegDaBZHQILm7di2Dxt1fZQoaAZoCWgPQwjko8UZQ65jQJSGlFKUaBVN6ANoFkdAgu1XlS0jT3V9lChoBmgJaA9DCEUtza0QolhAlIaUUpRoFU3oA2gWR0CDEPsIE8q4dX2UKGgGaAloD0MIrhBWY4lTZkCUhpRSlGgVTegDaBZHQIMROWUr08N1fZQoaAZoCWgPQwgbLJyk+eNfQJSGlFKUaBVN6ANoFkdAgxjAFPi1iXV9lChoBmgJaA9DCD/+0qI+VV9AlIaUUpRoFU3oA2gWR0CDHOMiKR+0dX2UKGgGaAloD0MI4/viUpVDX0CUhpRSlGgVTegDaBZHQIMthIxxkup1fZQoaAZoCWgPQwjcR25Nuv5gQJSGlFKUaBVN6ANoFkdAgzsv7vXsgXV9lChoBmgJaA9DCJseFJSil2FAlIaUUpRoFU3oA2gWR0CDPHUVBUrDdX2UKGgGaAloD0MIAKq4cYsZA8CUhpRSlGgVTRQBaBZHQINEkI7eVLV1fZQoaAZoCWgPQwgwndZtUDtjQJSGlFKUaBVNGgNoFkdAg0bHI6r/83V9lChoBmgJaA9DCFUX8DLDFF3AlIaUUpRoFU0PAWgWR0CDbZ9uP3i8dX2UKGgGaAloD0MIem6hK5FsYUCUhpRSlGgVTegDaBZHQIN5c7lq8Dl1fZQoaAZoCWgPQwjt8q0Pa3dgQJSGlFKUaBVN6ANoFkdAg3++On2qUHV9lChoBmgJaA9DCEPJ5NTOpVZAlIaUUpRoFU3oA2gWR0CDhyjk+5e7dX2UKGgGaAloD0MI6iXGMv1rY0CUhpRSlGgVTegDaBZHQIONw1m8M/h1fZQoaAZoCWgPQwj7zFmfcm9bQJSGlFKUaBVN6ANoFkdAg5LIcaOxS3V9lChoBmgJaA9DCMo0mlyMCV5AlIaUUpRoFU3oA2gWR0CDl42VmjCYdX2UKGgGaAloD0MISUkPQ6uqZUCUhpRSlGgVTYUCaBZHQIOYSUHIIWx1fZQoaAZoCWgPQwip2JjXER9CQJSGlFKUaBVN6ANoFkdAg6GiFTNt7HV9lChoBmgJaA9DCBTrVPkeGmNAlIaUUpRoFU3oA2gWR0CDqCsXizcAdX2UKGgGaAloD0MIKQZINIG6OsCUhpRSlGgVTTMBaBZHQIOwEEeQuEp1fZQoaAZoCWgPQwjnVDIA1BFlQJSGlFKUaBVNPwJoFkdAg7y50bLlm3V9lChoBmgJaA9DCOsB85CpoWNAlIaUUpRoFU2lA2gWR0CDv1q5byH3dX2UKGgGaAloD0MIR+f8FMenUUCUhpRSlGgVTegDaBZHQIPnhrP+n651fZQoaAZoCWgPQwhMUwQ4vXRaQJSGlFKUaBVN6ANoFkdAg/iZ57gKnnV9lChoBmgJaA9DCKLsLeV8MFVAlIaUUpRoFU3oA2gWR0CD+h/0dzXCdX2UKGgGaAloD0MINfEO8KSKUkCUhpRSlGgVTegDaBZHQIQDx6MR6GB1fZQoaAZoCWgPQwgbnl4pyyhdQJSGlFKUaBVN6ANoFkdAhAZYWDYh+3V9lChoBmgJaA9DCJDXg0nxFlZAlIaUUpRoFU3oA2gWR0CEO822G7BgdX2UKGgGaAloD0MIlNqLaDvSYECUhpRSlGgVTegDaBZHQIRClyvLX+V1fZQoaAZoCWgPQwjMCdrk8P5XQJSGlFKUaBVN6ANoFkdAhFK0L+glGHV9lChoBmgJaA9DCBOe0OtPPE9AlIaUUpRoFU3oA2gWR0CEWKzD4xk/dX2UKGgGaAloD0MIlSh7SzlUYkCUhpRSlGgVTegDaBZHQIRd4OFxn4B1fZQoaAZoCWgPQwhiMepaexlaQJSGlFKUaBVN6ANoFkdAhF67q6e5F3V9lChoBmgJaA9DCKgbKPBOwGlAlIaUUpRoFU17AWgWR0CEaM4PwuuidX2UKGgGaAloD0MIxjL9EvGYV0CUhpRSlGgVTegDaBZHQIRpaD5CWu51fZQoaAZoCWgPQwhZv5mYLlxXQJSGlFKUaBVN6ANoFkdAhG/U2UB4lnV9lChoBmgJaA9DCFsGnKVkG11AlIaUUpRoFU3oA2gWR0CEd7l+3H7xdX2UKGgGaAloD0MIPggB+RLhVkCUhpRSlGgVTegDaBZHQISDXOhTOxB1fZQoaAZoCWgPQwiT5Lm+D+lYQJSGlFKUaBVN6ANoFkdAhIWF7D2rXHV9lChoBmgJaA9DCO0RaoZU/l9AlIaUUpRoFU3oA2gWR0CEqEXXRPXTdX2UKGgGaAloD0MI3c6+8qD/akCUhpRSlGgVTRICaBZHQIS03X9R77d1fZQoaAZoCWgPQwhXzXNEvrtRQJSGlFKUaBVN6ANoFkdAhLcRgJC0GHV9lChoBmgJaA9DCEZ55uWw4VlAlIaUUpRoFU3oA2gWR0CEuE2BreqJdX2UKGgGaAloD0MIelORCmPYaECUhpRSlGgVTf8BaBZHQIS6EfaHsTp1fZQoaAZoCWgPQwhGQIUjyBphQJSGlFKUaBVN6ANoFkdAhL+pwsGxEHV9lChoBmgJaA9DCLQglPdxY1hAlIaUUpRoFU3oA2gWR0CE8/xUedTYdX2UKGgGaAloD0MI0/nwLEHuRECUhpRSlGgVTRkBaBZHQIT3p+QU5+91fZQoaAZoCWgPQwgst7QaErdZQJSGlFKUaBVN6ANoFkdAhPnmlZX+2nV9lChoBmgJaA9DCJrS+lsCrFFAlIaUUpRoFU3oA2gWR0CFB0Vlf7aadX2UKGgGaAloD0MIaM2PvzT4YUCUhpRSlGgVTegDaBZHQIUMNld1Mdt1fZQoaAZoCWgPQwjkTBO2n4hkQJSGlFKUaBVNJgNoFkdAhRAadtl7MXV9lChoBmgJaA9DCL6HS447TGBAlIaUUpRoFU3oA2gWR0CFELuKGcnWdX2UKGgGaAloD0MIOdOE7SfSWkCUhpRSlGgVTegDaBZHQIURc5sCT2Z1fZQoaAZoCWgPQwh6U5EK43xjQJSGlFKUaBVN6ANoFkdAhRnlVT72tnV9lChoBmgJaA9DCMUfRZ25YmNAlIaUUpRoFU3oA2gWR0CFNWDVYp2EdX2UKGgGaAloD0MIoRFsXH/aYkCUhpRSlGgVTegDaBZHQIU4DqMWGh51fZQoaAZoCWgPQwjjiSDOw2BcQJSGlFKUaBVN6ANoFkdAhXL1/DtPYXV9lChoBmgJaA9DCEeNCTGXhF1AlIaUUpRoFU3oA2gWR0CFdcEovzvrdX2UKGgGaAloD0MIoDL+fcZOVUCUhpRSlGgVTegDaBZHQIV3ILXtjTd1fZQoaAZoCWgPQwiSsdr8v1ZaQJSGlFKUaBVN6ANoFkdAhXkrUTcqOXV9lChoBmgJaA9DCNGxg0pcKFJAlIaUUpRoFU3oA2gWR0CFf/AB1cMWdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5602f1d764ed1967cf15e5084436611f93be70ddbb674c5b5cf49ff9ff6920cf
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa99408d0807cf786416cd173f636c5cd1b96b73633947c72c910b8d46a30603
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (256 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 73.61305944687739, "std_reward": 70.22227870418187, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-08T10:17:20.733239"}
|