File size: 2,467 Bytes
b997180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c346999
a86b0ca
b997180
a86b0ca
b997180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86b0ca
 
 
 
b997180
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
language:
- ja
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
metrics:
- wer
model-index:
- name: whisper-large-v3-japanese-4k-steps
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 16.1
      type: mozilla-foundation/common_voice_16_1
      config: ja
      split: None
      args: 'config: ja, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 1821.4909443725744
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-japanese-4k-steps

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 16.1 dataset. I followed a post by Sanchit Gandhi, https://huggingface.co/blog/fine-tune-whisper
It took 24 hours using an A100 on Google Colab to complete 4000 steps using the Common Voice 16.1 dataset. Training loss dropped over epochs but validation loss increased, so textbook overfitting. Furthermore, WER increased. It achieves the following results on the evaluation set:
- Loss: 0.4057
- Wer: 18.2149

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer       |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| 0.1374        | 1.02  | 1000 | 0.3618          | 11.983182 |
| 0.0508        | 2.04  | 2000 | 0.3658          | 17.554657 |
| 0.0206        | 3.05  | 3000 | 0.3904          | 21.087484 |
| 0.0066        | 4.07  | 4000 | 0.4057          | 18.214909 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2