--- base_model: Snowflake/snowflake-arctic-embed-m library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 - dot_accuracy@1 - dot_accuracy@3 - dot_accuracy@5 - dot_accuracy@10 - dot_precision@1 - dot_precision@3 - dot_precision@5 - dot_precision@10 - dot_recall@1 - dot_recall@3 - dot_recall@5 - dot_recall@10 - dot_ndcg@10 - dot_mrr@10 - dot_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:600 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Which entities are responsible for enforcing the requirements discussed in the context? sentences: - 'ALGORITHMIC DISCRIMINATION PROTECTIONS You should not face discrimination by algorithms and systems should be used and designed in' - 'SECTION TITLE HUMAN ALTERNATIVES, CONSIDERATION, AND FALLBACK You should be able to opt out, where appropriate, and have access to a person who can quickly' - requirements of the Federal agencies that enforce them. These principles are not intended to, and do not, - source_sentence: How is safety addressed in the development process according to the context? sentences: - "TABLE OF CONTENTS\nFROM PRINCIPLES TO PRACTICE: A TECHNICAL COMPANION TO THE\ \ BLUEPRINT \nFOR AN AI BILL OF RIGHTS \n \nUSING THIS TECHNICAL COMPANION\n \n\ SAFE AND EFFECTIVE SYSTEMS" - "stemming from unintended, yet foreseeable, uses or \n \n \n \n \n \n \n \nSECTION\ \ TITLE\nBLUEPRINT FOR AN\nSAFE AND E \nYou should be protected from unsafe or\ \ \ndeveloped with consultation from diverse" - tion or implemented under existing U.S. laws. For example, government surveillance, and data search and - source_sentence: How should the deployment of automated systems be aligned with the principles for protecting the American public? sentences: - "public and private sector contexts; \nEqual opportunities, including equitable\ \ access to education, housing, credit, employment, and other \nprograms; or," - use, and deployment of automated systems to protect the rights of the American public in the age of artificial - five principles that should guide the design, use, and deployment of automated systems to protect the American - source_sentence: Who should designers, developers, and deployers of automated systems seek permission from? sentences: - This important progress must not come at the price of civil rights or democratic values, foundational American - a blueprint for building and deploying automated systems that are aligned with democratic values and protect - context is collected. Designers, developers, and deployers of automated systems should seek your permission - source_sentence: What changes are suggested for notice-and-choice practices regarding broad uses of data? sentences: - mated systems, and researchers developing innovative guardrails. Advocates, researchers, and government - tial to meaningfully impact rights, opportunities, or access. Additionally, this framework does not analyze or - understand notice-and-choice practices for broad uses of data should be changed. Enhanced protections and model-index: - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m results: - task: type: information-retrieval name: Information Retrieval dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy@1 value: 0.9 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.99 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.99 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.9 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.33000000000000007 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19799999999999998 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09999999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.9 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.99 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.99 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9601170111547646 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9464285714285714 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9464285714285714 name: Cosine Map@100 - type: dot_accuracy@1 value: 0.9 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.99 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.99 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 1.0 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.9 name: Dot Precision@1 - type: dot_precision@3 value: 0.33000000000000007 name: Dot Precision@3 - type: dot_precision@5 value: 0.19799999999999998 name: Dot Precision@5 - type: dot_precision@10 value: 0.09999999999999998 name: Dot Precision@10 - type: dot_recall@1 value: 0.9 name: Dot Recall@1 - type: dot_recall@3 value: 0.99 name: Dot Recall@3 - type: dot_recall@5 value: 0.99 name: Dot Recall@5 - type: dot_recall@10 value: 1.0 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9601170111547646 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.9464285714285714 name: Dot Mrr@10 - type: dot_map@100 value: 0.9464285714285714 name: Dot Map@100 --- # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("dstampfli/finetuned-snowflake-arctic-embed-m") # Run inference sentences = [ 'What changes are suggested for notice-and-choice practices regarding broad uses of data?', 'understand notice-and-choice practices for broad uses of data should be changed. Enhanced protections and', 'tial to meaningfully impact rights, opportunities, or access. Additionally, this framework does not analyze or', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.9 | | cosine_accuracy@3 | 0.99 | | cosine_accuracy@5 | 0.99 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.9 | | cosine_precision@3 | 0.33 | | cosine_precision@5 | 0.198 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.9 | | cosine_recall@3 | 0.99 | | cosine_recall@5 | 0.99 | | cosine_recall@10 | 1.0 | | cosine_ndcg@10 | 0.9601 | | cosine_mrr@10 | 0.9464 | | **cosine_map@100** | **0.9464** | | dot_accuracy@1 | 0.9 | | dot_accuracy@3 | 0.99 | | dot_accuracy@5 | 0.99 | | dot_accuracy@10 | 1.0 | | dot_precision@1 | 0.9 | | dot_precision@3 | 0.33 | | dot_precision@5 | 0.198 | | dot_precision@10 | 0.1 | | dot_recall@1 | 0.9 | | dot_recall@3 | 0.99 | | dot_recall@5 | 0.99 | | dot_recall@10 | 1.0 | | dot_ndcg@10 | 0.9601 | | dot_mrr@10 | 0.9464 | | dot_map@100 | 0.9464 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 600 training samples * Columns: sentence_0 and sentence_1 * Approximate statistics based on the first 600 samples: | | sentence_0 | sentence_1 | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | sentence_0 | sentence_1 | |:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------| | What is the purpose of the AI Bill of Rights mentioned in the context? | BLUEPRINT FOR AN
AI BILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022
| | When was the Blueprint for an AI Bill of Rights published? | BLUEPRINT FOR AN
AI BILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022
| | What is the main purpose of the Blueprint for an AI Bill of Rights? | About this Document
The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was
| * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 20 - `per_device_eval_batch_size`: 20 - `num_train_epochs`: 5 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 20 - `per_device_eval_batch_size`: 20 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | cosine_map@100 | |:------:|:----:|:--------------:| | 1.0 | 30 | 0.9458 | | 1.6667 | 50 | 0.9461 | | 2.0 | 60 | 0.9461 | | 3.0 | 90 | 0.9463 | | 3.3333 | 100 | 0.9463 | | 4.0 | 120 | 0.9464 | | 5.0 | 150 | 0.9464 | ### Framework Versions - Python: 3.11.9 - Sentence Transformers: 3.1.1 - Transformers: 4.44.2 - PyTorch: 2.4.1 - Accelerate: 0.34.2 - Datasets: 3.0.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```