---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Which entities are responsible for enforcing the requirements discussed
in the context?
sentences:
- 'ALGORITHMIC DISCRIMINATION PROTECTIONS
You should not face discrimination by algorithms and systems should be used and
designed in'
- 'SECTION TITLE
HUMAN ALTERNATIVES, CONSIDERATION, AND FALLBACK
You should be able to opt out, where appropriate, and have access to a person
who can quickly'
- requirements of the Federal agencies that enforce them. These principles are not
intended to, and do not,
- source_sentence: How is safety addressed in the development process according to
the context?
sentences:
- "TABLE OF CONTENTS\nFROM PRINCIPLES TO PRACTICE: A TECHNICAL COMPANION TO THE\
\ BLUEPRINT \nFOR AN AI BILL OF RIGHTS \n \nUSING THIS TECHNICAL COMPANION\n \n\
SAFE AND EFFECTIVE SYSTEMS"
- "stemming from unintended, yet foreseeable, uses or \n \n \n \n \n \n \n \nSECTION\
\ TITLE\nBLUEPRINT FOR AN\nSAFE AND E \nYou should be protected from unsafe or\
\ \ndeveloped with consultation from diverse"
- tion or implemented under existing U.S. laws. For example, government surveillance,
and data search and
- source_sentence: How should the deployment of automated systems be aligned with
the principles for protecting the American public?
sentences:
- "public and private sector contexts; \nEqual opportunities, including equitable\
\ access to education, housing, credit, employment, and other \nprograms; or,"
- use, and deployment of automated systems to protect the rights of the American
public in the age of artificial
- five principles that should guide the design, use, and deployment of automated
systems to protect the American
- source_sentence: Who should designers, developers, and deployers of automated systems
seek permission from?
sentences:
- This important progress must not come at the price of civil rights or democratic
values, foundational American
- a blueprint for building and deploying automated systems that are aligned with
democratic values and protect
- context is collected. Designers, developers, and deployers of automated systems
should seek your permission
- source_sentence: What changes are suggested for notice-and-choice practices regarding
broad uses of data?
sentences:
- mated systems, and researchers developing innovative guardrails. Advocates, researchers,
and government
- tial to meaningfully impact rights, opportunities, or access. Additionally, this
framework does not analyze or
- understand notice-and-choice practices for broad uses of data should be changed.
Enhanced protections and
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.99
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.99
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.33000000000000007
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19799999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.99
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.99
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9601170111547646
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9464285714285714
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9464285714285714
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.9
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.99
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.99
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9
name: Dot Precision@1
- type: dot_precision@3
value: 0.33000000000000007
name: Dot Precision@3
- type: dot_precision@5
value: 0.19799999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.9
name: Dot Recall@1
- type: dot_recall@3
value: 0.99
name: Dot Recall@3
- type: dot_recall@5
value: 0.99
name: Dot Recall@5
- type: dot_recall@10
value: 1.0
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9601170111547646
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9464285714285714
name: Dot Mrr@10
- type: dot_map@100
value: 0.9464285714285714
name: Dot Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dstampfli/finetuned-snowflake-arctic-embed-m")
# Run inference
sentences = [
'What changes are suggested for notice-and-choice practices regarding broad uses of data?',
'understand notice-and-choice practices for broad uses of data should be changed. Enhanced protections and',
'tial to meaningfully impact rights, opportunities, or access. Additionally, this framework does not analyze or',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9 |
| cosine_accuracy@3 | 0.99 |
| cosine_accuracy@5 | 0.99 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9 |
| cosine_precision@3 | 0.33 |
| cosine_precision@5 | 0.198 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9 |
| cosine_recall@3 | 0.99 |
| cosine_recall@5 | 0.99 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9601 |
| cosine_mrr@10 | 0.9464 |
| **cosine_map@100** | **0.9464** |
| dot_accuracy@1 | 0.9 |
| dot_accuracy@3 | 0.99 |
| dot_accuracy@5 | 0.99 |
| dot_accuracy@10 | 1.0 |
| dot_precision@1 | 0.9 |
| dot_precision@3 | 0.33 |
| dot_precision@5 | 0.198 |
| dot_precision@10 | 0.1 |
| dot_recall@1 | 0.9 |
| dot_recall@3 | 0.99 |
| dot_recall@5 | 0.99 |
| dot_recall@10 | 1.0 |
| dot_ndcg@10 | 0.9601 |
| dot_mrr@10 | 0.9464 |
| dot_map@100 | 0.9464 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 600 training samples
* Columns: sentence_0
and sentence_1
* Approximate statistics based on the first 600 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
What is the purpose of the AI Bill of Rights mentioned in the context?
| BLUEPRINT FOR AN
AI BILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022
|
| When was the Blueprint for an AI Bill of Rights published?
| BLUEPRINT FOR AN
AI BILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022
|
| What is the main purpose of the Blueprint for an AI Bill of Rights?
| About this Document
The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters