|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch SAM model.""" |
|
|
|
import collections |
|
import math |
|
from dataclasses import dataclass |
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import Tensor, nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BaseModelOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
) |
|
from transformers.models.sam.configuration_sam import SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig |
|
from .configuration_sam_hq import SamHQConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "SamConfig" |
|
_CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge" |
|
|
|
|
|
@dataclass |
|
class SamVisionEncoderOutput(ModelOutput): |
|
""" |
|
Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection |
|
layer to the pooler_output. |
|
|
|
Args: |
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): |
|
The image embeddings obtained by applying the projection layer to the pooler_output. |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
image_embeds: Optional[torch.FloatTensor] = None |
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
|
|
|
|
@dataclass |
|
class SamImageSegmentationOutput(ModelOutput): |
|
""" |
|
Base class for Segment-Anything model's output |
|
|
|
Args: |
|
iou_scores (`torch.FloatTensor` of shape `(batch_size, num_masks)`): |
|
The iou scores of the predicted masks. |
|
pred_masks (`torch.FloatTensor` of shape `(batch_size, num_masks, height, width)`): |
|
The predicted low resolutions masks. Needs to be post-processed by the processor |
|
vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs. |
|
vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
mask_decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
iou_scores: torch.FloatTensor = None |
|
pred_masks: torch.FloatTensor = None |
|
vision_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
vision_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
mask_decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
|
|
|
|
class SamPatchEmbeddings(nn.Module): |
|
""" |
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial |
|
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a |
|
Transformer. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
image_size, patch_size = config.image_size, config.patch_size |
|
num_channels, hidden_size = config.num_channels, config.hidden_size |
|
image_size = ( |
|
image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) |
|
) |
|
patch_size = ( |
|
patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) |
|
) |
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.num_patches = num_patches |
|
|
|
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, pixel_values): |
|
batch_size, num_channels, height, width = pixel_values.shape |
|
if num_channels != self.num_channels: |
|
raise ValueError( |
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." |
|
) |
|
if height != self.image_size[0] or width != self.image_size[1]: |
|
raise ValueError( |
|
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." |
|
) |
|
embeddings = self.projection(pixel_values).permute(0, 2, 3, 1) |
|
return embeddings |
|
|
|
|
|
class SamMLPBlock(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.lin1 = nn.Linear(config.hidden_size, config.mlp_dim) |
|
self.lin2 = nn.Linear(config.mlp_dim, config.hidden_size) |
|
self.act = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.lin1(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.lin2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class SamLayerNorm(nn.Module): |
|
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. |
|
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, |
|
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). |
|
""" |
|
|
|
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.bias = nn.Parameter(torch.zeros(normalized_shape)) |
|
self.eps = eps |
|
self.data_format = data_format |
|
if self.data_format not in ["channels_last", "channels_first"]: |
|
raise NotImplementedError(f"Unsupported data format: {self.data_format}") |
|
self.normalized_shape = (normalized_shape,) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.data_format == "channels_last": |
|
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
elif self.data_format == "channels_first": |
|
input_dtype = x.dtype |
|
x = x.float() |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = x.to(dtype=input_dtype) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
|
|
class SamAttention(nn.Module): |
|
""" |
|
SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and |
|
values. |
|
""" |
|
|
|
def __init__(self, config, downsample_rate=None): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate |
|
|
|
self.internal_dim = config.hidden_size // downsample_rate |
|
self.num_attention_heads = config.num_attention_heads |
|
if self.internal_dim % config.num_attention_heads != 0: |
|
raise ValueError("num_attention_heads must divide hidden_size.") |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.internal_dim) |
|
self.k_proj = nn.Linear(self.hidden_size, self.internal_dim) |
|
self.v_proj = nn.Linear(self.hidden_size, self.internal_dim) |
|
self.out_proj = nn.Linear(self.internal_dim, self.hidden_size) |
|
|
|
def _separate_heads(self, hidden_states: Tensor, num_attention_heads: int) -> Tensor: |
|
batch, point_batch_size, n_tokens, channel = hidden_states.shape |
|
c_per_head = channel // num_attention_heads |
|
hidden_states = hidden_states.reshape( |
|
batch * point_batch_size, n_tokens, num_attention_heads, c_per_head |
|
) |
|
return hidden_states.transpose(1, 2) |
|
|
|
def _recombine_heads(self, hidden_states: Tensor, point_batch_size: int) -> Tensor: |
|
batch, n_heads, n_tokens, c_per_head = hidden_states.shape |
|
hidden_states = hidden_states.transpose(1, 2) |
|
return hidden_states.reshape( |
|
batch // point_batch_size, point_batch_size, n_tokens, n_heads * c_per_head |
|
) |
|
|
|
def forward( |
|
self, query: Tensor, key: Tensor, value: Tensor, attention_similarity: Tensor = None |
|
) -> Tensor: |
|
|
|
query = self.q_proj(query) |
|
key = self.k_proj(key) |
|
value = self.v_proj(value) |
|
|
|
point_batch_size = query.shape[1] |
|
|
|
query = self._separate_heads(query, self.num_attention_heads) |
|
key = self._separate_heads(key, self.num_attention_heads) |
|
value = self._separate_heads(value, self.num_attention_heads) |
|
|
|
|
|
_, _, _, c_per_head = query.shape |
|
attn = query @ key.permute( |
|
0, 1, 3, 2 |
|
) |
|
attn = attn / math.sqrt(c_per_head) |
|
attn = torch.softmax(attn, dim=-1) |
|
|
|
if attention_similarity is not None: |
|
attn = attn + attention_similarity |
|
attn = torch.softmax(attn, dim=-1) |
|
|
|
|
|
out = attn @ value |
|
out = self._recombine_heads(out, point_batch_size) |
|
out = self.out_proj(out) |
|
|
|
return out |
|
|
|
|
|
class SamTwoWayAttentionBlock(nn.Module): |
|
def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False): |
|
""" |
|
A transformer block with four layers: |
|
(1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on |
|
sparse inputs (4) cross attention of dense inputs -> sparse inputs |
|
|
|
Arguments: |
|
config (`SamMaskDecoderConfig`): |
|
The configuration file used to instantiate the block |
|
attention_downsample_rate (*optionalk*, int, defaults to 2): |
|
The downsample ratio of the block used to reduce the inner dim of the attention. |
|
skip_first_layer_pe (*optional*, bool, defaults to `False`): |
|
Whether or not to skip the addition of the query_point_embedding on the first layer. |
|
""" |
|
super().__init__() |
|
|
|
self.hidden_size = config.hidden_size |
|
self.layer_norm_eps = config.layer_norm_eps |
|
|
|
self.self_attn = SamAttention(config, downsample_rate=1) |
|
self.layer_norm1 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps) |
|
|
|
self.cross_attn_token_to_image = SamAttention(config, downsample_rate=attention_downsample_rate) |
|
self.layer_norm2 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps) |
|
|
|
self.mlp = SamMLPBlock(config) |
|
self.layer_norm3 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps) |
|
|
|
self.layer_norm4 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps) |
|
self.cross_attn_image_to_token = SamAttention(config, downsample_rate=attention_downsample_rate) |
|
|
|
self.skip_first_layer_pe = skip_first_layer_pe |
|
|
|
def forward( |
|
self, |
|
queries: Tensor, |
|
keys: Tensor, |
|
query_point_embedding: Tensor, |
|
key_point_embedding: Tensor, |
|
attention_similarity: Tensor, |
|
output_attentions: bool = False, |
|
): |
|
|
|
if self.skip_first_layer_pe: |
|
queries = self.self_attn(query=queries, key=queries, value=queries) |
|
else: |
|
query = queries + query_point_embedding |
|
attn_out = self.self_attn(query=query, key=query, value=queries) |
|
queries = queries + attn_out |
|
queries = self.layer_norm1(queries) |
|
|
|
|
|
query = queries + query_point_embedding |
|
key = keys + key_point_embedding |
|
|
|
attn_out = self.cross_attn_token_to_image( |
|
query=query, key=key, value=keys, attention_similarity=attention_similarity |
|
) |
|
queries = queries + attn_out |
|
|
|
queries = self.layer_norm2(queries) |
|
|
|
|
|
mlp_out = self.mlp(queries) |
|
queries = queries + mlp_out |
|
queries = self.layer_norm3(queries) |
|
|
|
|
|
query = queries + query_point_embedding |
|
key = keys + key_point_embedding |
|
|
|
attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries) |
|
keys = keys + attn_out |
|
|
|
keys = self.layer_norm4(keys) |
|
|
|
outputs = (queries, keys) |
|
|
|
if output_attentions: |
|
outputs = outputs + (attn_out,) |
|
else: |
|
outputs = outputs + (None,) |
|
|
|
return outputs |
|
|
|
|
|
class SamTwoWayTransformer(nn.Module): |
|
def __init__(self, config: SamMaskDecoderConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.num_hidden_layers = config.num_hidden_layers |
|
self.layers = nn.ModuleList() |
|
|
|
for i in range(self.num_hidden_layers): |
|
self.layers.append(SamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0))) |
|
|
|
self.final_attn_token_to_image = SamAttention(config) |
|
self.layer_norm_final_attn = nn.LayerNorm(config.hidden_size) |
|
|
|
def forward( |
|
self, |
|
point_embeddings: Tensor, |
|
image_embeddings: Tensor, |
|
image_positional_embeddings: Tensor, |
|
attention_similarity: Tensor, |
|
target_embedding=None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
output_attentions = ( |
|
output_attentions if output_attentions is not None else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
all_attentions = () |
|
|
|
if image_embeddings is None: |
|
raise ValueError("You have to specify an image_embedding") |
|
|
|
image_embeddings = image_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1) |
|
image_positional_embeddings = image_positional_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1) |
|
|
|
|
|
queries = point_embeddings |
|
keys = image_embeddings |
|
|
|
|
|
for layer in self.layers: |
|
if target_embedding is not None: |
|
queries += target_embedding |
|
|
|
queries, keys, attention_outputs = layer( |
|
queries=queries, |
|
keys=keys, |
|
query_point_embedding=point_embeddings, |
|
key_point_embedding=image_positional_embeddings, |
|
attention_similarity=attention_similarity, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (attention_outputs,) |
|
|
|
|
|
query = queries + point_embeddings |
|
key = keys + image_positional_embeddings |
|
|
|
attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys) |
|
|
|
queries = queries + attn_out |
|
queries = self.layer_norm_final_attn(queries) |
|
return queries, keys, all_attentions |
|
|
|
|
|
class SamFeedForward(nn.Module): |
|
def __init__( |
|
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False |
|
): |
|
super().__init__() |
|
self.num_layers = num_layers |
|
self.activation = nn.ReLU() |
|
self.proj_in = nn.Linear(input_dim, hidden_dim) |
|
self.proj_out = nn.Linear(hidden_dim, output_dim) |
|
self.layers = nn.ModuleList([nn.Linear(hidden_dim, hidden_dim) for _ in range(num_layers - 2)]) |
|
self.sigmoid_output = sigmoid_output |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.proj_in(hidden_states) |
|
hidden_states = self.activation(hidden_states) |
|
for layer in self.layers: |
|
hidden_states = self.activation(layer(hidden_states)) |
|
|
|
hidden_states = self.proj_out(hidden_states) |
|
if self.sigmoid_output: |
|
hidden_states = F.sigmoid(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class SamMaskDecoderHQ(nn.Module): |
|
def __init__(self, config: SamMaskDecoderConfig): |
|
super().__init__() |
|
|
|
self.hidden_size = config.hidden_size |
|
self.vision_encoder_dim = config.vision_encoder_dim |
|
|
|
self.num_multimask_outputs = config.num_multimask_outputs |
|
self.num_mask_tokens = config.num_multimask_outputs + 1 |
|
|
|
self.iou_token = nn.Embedding(1, self.hidden_size) |
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, self.hidden_size) |
|
|
|
self.transformer = SamTwoWayTransformer(config) |
|
|
|
|
|
self.upscale_conv1 = nn.ConvTranspose2d( |
|
self.hidden_size, self.hidden_size // 4, kernel_size=2, stride=2 |
|
) |
|
self.upscale_conv2 = nn.ConvTranspose2d( |
|
self.hidden_size // 4, self.hidden_size // 8, kernel_size=2, stride=2 |
|
) |
|
self.upscale_layer_norm = SamLayerNorm(self.hidden_size // 4, data_format="channels_first") |
|
self.activation = nn.GELU() |
|
|
|
mlps_list = [] |
|
for _ in range(self.num_mask_tokens): |
|
mlps_list += [SamFeedForward(self.hidden_size, self.hidden_size, self.hidden_size // 8, 3)] |
|
self.output_hypernetworks_mlps = nn.ModuleList(mlps_list) |
|
|
|
self.iou_prediction_head = SamFeedForward( |
|
self.hidden_size, config.iou_head_hidden_dim, self.num_mask_tokens, config.iou_head_depth |
|
) |
|
|
|
|
|
self.hf_token = nn.Embedding(1, self.hidden_size) |
|
self.hf_mlp = SamFeedForward( |
|
self.hidden_size, self.hidden_size, self.hidden_size // 8, 3 |
|
) |
|
self.num_mask_tokens = self.num_mask_tokens + 1 |
|
|
|
|
|
self.compress_vit_feat = nn.Sequential( |
|
nn.ConvTranspose2d(self.vision_encoder_dim, self.hidden_size, kernel_size=2, stride=2), |
|
SamLayerNorm(self.hidden_size, data_format="channels_first"), |
|
nn.GELU(), |
|
nn.ConvTranspose2d(self.hidden_size, self.hidden_size // 8, kernel_size=2, stride=2), |
|
) |
|
|
|
self.embedding_encoder = nn.Sequential( |
|
nn.ConvTranspose2d(self.hidden_size, self.hidden_size // 4, kernel_size=2, stride=2), |
|
SamLayerNorm(self.hidden_size // 4, data_format="channels_first"), |
|
nn.GELU(), |
|
nn.ConvTranspose2d(self.hidden_size // 4, self.hidden_size // 8, kernel_size=2, stride=2), |
|
) |
|
self.embedding_maskfeature = nn.Sequential( |
|
nn.Conv2d(self.hidden_size // 8, self.hidden_size // 4, 3, 1, 1), |
|
SamLayerNorm(self.hidden_size // 4, data_format="channels_first"), |
|
nn.GELU(), |
|
nn.Conv2d(self.hidden_size // 4, self.hidden_size // 8, 3, 1, 1), |
|
) |
|
|
|
def forward( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_positional_embeddings: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
dense_prompt_embeddings: torch.Tensor, |
|
multimask_output: bool, |
|
intermediate_vision_embeddings: torch.Tensor, |
|
hq_token_only: bool = False, |
|
output_attentions: Optional[bool] = None, |
|
attention_similarity: torch.Tensor = None, |
|
target_embedding: torch.Tensor = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Predict masks given image and prompt embeddings. |
|
|
|
Args: |
|
image_embeddings (`torch.Tensor`): |
|
the embeddings from the image encoder |
|
image_positional_embedding (`torch.Tensor`): |
|
positional encoding with the shape of image_embeddings |
|
sparse_prompt_embeddings (`torch.Tensor`): |
|
The embeddings of the points and boxes |
|
dense_prompt_embeddings (`torch.Tensor`): |
|
the embeddings of the mask inputs |
|
multimask_output (bool): |
|
Whether to return multiple masks or a single mask. |
|
output_attentions (bool, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
""" |
|
batch_size, num_channels, height, width = image_embeddings.shape |
|
point_batch_size = sparse_prompt_embeddings.shape[1] |
|
|
|
vit_inter_features = intermediate_vision_embeddings[0].permute( |
|
0, 3, 1, 2 |
|
) |
|
hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_inter_features) |
|
|
|
|
|
output_tokens = torch.cat( |
|
[self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0 |
|
) |
|
output_tokens = output_tokens.repeat(batch_size, point_batch_size, 1, 1) |
|
|
|
if sparse_prompt_embeddings.sum().item() != 0: |
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=2) |
|
else: |
|
tokens = output_tokens |
|
point_embeddings = tokens.to(self.iou_token.weight.dtype) |
|
|
|
|
|
image_embeddings = image_embeddings + dense_prompt_embeddings |
|
image_embeddings = image_embeddings.repeat_interleave(point_batch_size, 0) |
|
image_positional_embeddings = image_positional_embeddings.repeat_interleave(point_batch_size, 0) |
|
|
|
|
|
point_embedding, image_embeddings, attentions = self.transformer( |
|
point_embeddings=point_embeddings, |
|
image_embeddings=image_embeddings, |
|
image_positional_embeddings=image_positional_embeddings, |
|
attention_similarity=attention_similarity, |
|
target_embedding=target_embedding, |
|
output_attentions=output_attentions, |
|
) |
|
iou_token_out = point_embedding[:, :, 0, :] |
|
mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :] |
|
|
|
|
|
image_embeddings = image_embeddings.transpose(2, 3).reshape( |
|
batch_size * point_batch_size, num_channels, height, width |
|
) |
|
|
|
upscaled_embedding_sam = self.upscale_conv1(image_embeddings) |
|
upscaled_embedding_sam = self.activation(self.upscale_layer_norm(upscaled_embedding_sam)) |
|
upscaled_embedding_sam = self.activation(self.upscale_conv2(upscaled_embedding_sam)) |
|
|
|
upscaled_embedding_hq = self.embedding_maskfeature(upscaled_embedding_sam) + hq_features.repeat( |
|
batch_size * point_batch_size, 1, 1, 1 |
|
) |
|
|
|
hyper_in_list = [] |
|
for i in range(self.num_mask_tokens): |
|
mask_out_embedding = mask_tokens_out[:, :, i, :] |
|
if i < self.num_mask_tokens - 1: |
|
hyper = self.output_hypernetworks_mlps[i](mask_out_embedding) |
|
else: |
|
hyper = self.hf_mlp(mask_out_embedding) |
|
hyper_in_list.append(hyper) |
|
hyper_in = torch.stack(hyper_in_list, dim=2) |
|
|
|
_, num_channels, height, width = upscaled_embedding_sam.shape |
|
upscaled_embedding_sam = upscaled_embedding_sam.reshape( |
|
batch_size, point_batch_size, num_channels, height * width |
|
) |
|
upscaled_embedding_hq = upscaled_embedding_hq.reshape( |
|
batch_size, point_batch_size, num_channels, height * width |
|
) |
|
|
|
masks_sam = (hyper_in[:, :, : self.num_mask_tokens - 1] @ upscaled_embedding_sam).reshape( |
|
batch_size, point_batch_size, -1, height, width |
|
) |
|
masks_hq = (hyper_in[:, :, self.num_mask_tokens - 1 :] @ upscaled_embedding_hq).reshape( |
|
batch_size, point_batch_size, 1, height, width |
|
) |
|
masks = torch.cat([masks_sam, masks_hq], dim=2) |
|
|
|
|
|
iou_pred = self.iou_prediction_head(iou_token_out) |
|
|
|
|
|
if multimask_output: |
|
|
|
mask_slice = slice(1, self.num_mask_tokens - 1) |
|
iou_pred = iou_pred[:, :, mask_slice] |
|
iou_pred, max_iou_idx = torch.max(iou_pred, dim=2) |
|
masks_multi = masks[:, :, mask_slice, :, :] |
|
masks_sam = masks_multi[ |
|
torch.arange(batch_size)[:, None, None], |
|
torch.arange(point_batch_size)[None, :, None], |
|
max_iou_idx, |
|
:, |
|
:, |
|
] |
|
else: |
|
|
|
mask_slice = slice(0, 1) |
|
iou_pred = iou_pred[:, :, mask_slice] |
|
masks_sam = masks[:, :, mask_slice, :, :] |
|
|
|
|
|
if hq_token_only: |
|
masks = masks_hq |
|
else: |
|
masks = masks_sam + masks_hq |
|
|
|
outputs = (masks, iou_pred) |
|
|
|
if output_attentions: |
|
outputs = outputs + (attentions,) |
|
else: |
|
outputs = outputs + (None,) |
|
|
|
return outputs |
|
|
|
|
|
class SamPositionalEmbedding(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.scale = config.hidden_size // 2 |
|
self.register_buffer("positional_embedding", self.scale * torch.randn((2, config.num_pos_feats))) |
|
|
|
def forward(self, input_coords, input_shape=None): |
|
"""Positionally encode points that are normalized to [0,1].""" |
|
coordinates = input_coords.clone() |
|
|
|
if input_shape is not None: |
|
coordinates[:, :, :, 0] = coordinates[:, :, :, 0] / input_shape[1] |
|
coordinates[:, :, :, 1] = coordinates[:, :, :, 1] / input_shape[0] |
|
|
|
|
|
coordinates = 2 * coordinates - 1 |
|
coordinates = coordinates.to(self.positional_embedding.dtype) |
|
coordinates = coordinates @ self.positional_embedding |
|
coordinates = 2 * np.pi * coordinates |
|
|
|
return torch.cat([torch.sin(coordinates), torch.cos(coordinates)], dim=-1) |
|
|
|
|
|
class SamMaskEmbedding(nn.Module): |
|
def __init__(self, config: SamPromptEncoderConfig): |
|
super().__init__() |
|
self.mask_input_channels = config.mask_input_channels // 4 |
|
self.activation = ACT2FN[config.hidden_act] |
|
self.conv1 = nn.Conv2d(1, self.mask_input_channels, kernel_size=2, stride=2) |
|
self.conv2 = nn.Conv2d(self.mask_input_channels, config.mask_input_channels, kernel_size=2, stride=2) |
|
self.conv3 = nn.Conv2d(config.mask_input_channels, config.hidden_size, kernel_size=1) |
|
self.layer_norm1 = SamLayerNorm( |
|
self.mask_input_channels, eps=config.layer_norm_eps, data_format="channels_first" |
|
) |
|
self.layer_norm2 = SamLayerNorm( |
|
self.mask_input_channels * 4, eps=config.layer_norm_eps, data_format="channels_first" |
|
) |
|
|
|
def forward(self, masks): |
|
hidden_states = self.conv1(masks) |
|
hidden_states = self.layer_norm1(hidden_states) |
|
hidden_states = self.activation(hidden_states) |
|
|
|
hidden_states = self.conv2(hidden_states) |
|
hidden_states = self.layer_norm2(hidden_states) |
|
hidden_states = self.activation(hidden_states) |
|
dense_embeddings = self.conv3(hidden_states) |
|
return dense_embeddings |
|
|
|
|
|
class SamPromptEncoder(nn.Module): |
|
def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding): |
|
super().__init__() |
|
self.shared_embedding = shared_patch_embedding |
|
self.mask_embed = SamMaskEmbedding(config) |
|
self.no_mask_embed = nn.Embedding(1, config.hidden_size) |
|
|
|
self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size) |
|
self.input_image_size = config.image_size |
|
|
|
self.point_embed = nn.ModuleList( |
|
[nn.Embedding(1, config.hidden_size) for i in range(config.num_point_embeddings)] |
|
) |
|
self.hidden_size = config.hidden_size |
|
self.not_a_point_embed = nn.Embedding(1, config.hidden_size) |
|
|
|
def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor: |
|
"""Embeds point prompts.""" |
|
points = points + 0.5 |
|
if pad: |
|
target_point_shape = (points.shape[0], points.shape[1], 1, points.shape[-1]) |
|
target_labels_shape = (points.shape[0], points.shape[1], 1) |
|
padding_point = torch.zeros(target_point_shape, device=points.device) |
|
padding_label = -torch.ones(target_labels_shape, device=labels.device) |
|
points = torch.cat([points, padding_point], dim=2) |
|
labels = torch.cat([labels, padding_label], dim=2) |
|
input_shape = (self.input_image_size, self.input_image_size) |
|
point_embedding = self.shared_embedding(points, input_shape) |
|
|
|
|
|
point_embedding = torch.where(labels[..., None] == -1, self.not_a_point_embed.weight, point_embedding) |
|
|
|
|
|
|
|
point_embedding = torch.where( |
|
labels[..., None] != -10, |
|
point_embedding, |
|
torch.tensor(0.0, dtype=point_embedding.dtype, device=point_embedding.device), |
|
) |
|
|
|
point_embedding = torch.where( |
|
(labels == 0)[:, :, :, None], |
|
point_embedding + self.point_embed[0].weight[None, None, :, :], |
|
point_embedding, |
|
) |
|
|
|
point_embedding = torch.where( |
|
(labels == 1)[:, :, :, None], |
|
point_embedding + self.point_embed[1].weight[None, None, :, :], |
|
point_embedding, |
|
) |
|
|
|
return point_embedding |
|
|
|
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: |
|
"""Embeds box prompts.""" |
|
boxes = boxes + 0.5 |
|
batch_size, nb_boxes = boxes.shape[:2] |
|
coords = boxes.reshape(batch_size, nb_boxes, 2, 2) |
|
input_shape = (self.input_image_size, self.input_image_size) |
|
corner_embedding = self.shared_embedding(coords, input_shape) |
|
corner_embedding[:, :, 0, :] += self.point_embed[2].weight |
|
corner_embedding[:, :, 1, :] += self.point_embed[3].weight |
|
return corner_embedding |
|
|
|
def forward( |
|
self, |
|
input_points: Optional[Tuple[torch.Tensor, torch.Tensor]], |
|
input_labels: Optional[torch.Tensor], |
|
input_boxes: Optional[torch.Tensor], |
|
input_masks: Optional[torch.Tensor], |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Embeds different types of prompts, returning both sparse and dense embeddings. |
|
|
|
Args: |
|
points (`torch.Tensor`, *optional*): |
|
point coordinates and labels to embed. |
|
boxes (`torch.Tensor`, *optional*): |
|
boxes to embed |
|
masks (`torch.Tensor`, *optional*): |
|
masks to embed |
|
""" |
|
sparse_embeddings = None |
|
batch_size = 1 |
|
target_device = self.shared_embedding.positional_embedding.device |
|
if input_points is not None: |
|
batch_size, point_batch_size = input_points.shape[:2] |
|
if input_labels is None: |
|
raise ValueError("If points are provided, labels must also be provided.") |
|
point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None)) |
|
sparse_embeddings = point_embeddings |
|
if input_boxes is not None: |
|
batch_size = input_boxes.shape[0] |
|
box_embeddings = self._embed_boxes(input_boxes) |
|
if sparse_embeddings is None: |
|
sparse_embeddings = box_embeddings |
|
else: |
|
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=2) |
|
if input_masks is not None: |
|
dense_embeddings = self.mask_embed(input_masks) |
|
else: |
|
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( |
|
batch_size, -1, self.image_embedding_size[0], self.image_embedding_size[1] |
|
) |
|
|
|
if sparse_embeddings is None: |
|
sparse_embeddings = torch.zeros((batch_size, 1, 1, self.hidden_size), device=target_device) |
|
|
|
return sparse_embeddings, dense_embeddings |
|
|
|
|
|
class SamVisionAttention(nn.Module): |
|
"""Multi-head Attention block with relative position embeddings.""" |
|
|
|
def __init__(self, config, window_size): |
|
super().__init__() |
|
input_size = ( |
|
(config.image_size // config.patch_size, config.image_size // config.patch_size) |
|
if window_size == 0 |
|
else (window_size, window_size) |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
head_dim = config.hidden_size // config.num_attention_heads |
|
self.scale = head_dim**-0.5 |
|
self.dropout = config.attention_dropout |
|
|
|
self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias) |
|
self.proj = nn.Linear(config.hidden_size, config.hidden_size) |
|
|
|
self.use_rel_pos = config.use_rel_pos |
|
if self.use_rel_pos: |
|
if input_size is None: |
|
raise ValueError("Input size must be provided if using relative positional encoding.") |
|
|
|
|
|
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) |
|
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) |
|
|
|
def get_rel_pos(self, q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Get relative positional embeddings according to the relative positions of |
|
query and key sizes. |
|
|
|
Args: |
|
q_size (int): |
|
size of the query. |
|
k_size (int): |
|
size of key k. |
|
rel_pos (`torch.Tensor`): |
|
relative position embeddings (L, channel). |
|
|
|
Returns: |
|
Extracted positional embeddings according to relative positions. |
|
""" |
|
max_rel_dist = int(2 * max(q_size, k_size) - 1) |
|
|
|
rel_pos_resized = F.interpolate( |
|
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), |
|
size=max_rel_dist, |
|
mode="linear", |
|
) |
|
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) |
|
|
|
|
|
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) |
|
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) |
|
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) |
|
|
|
return rel_pos_resized[relative_coords.long()] |
|
|
|
def add_decomposed_rel_pos( |
|
self, |
|
attn: torch.Tensor, |
|
query: torch.Tensor, |
|
rel_pos_h: torch.Tensor, |
|
rel_pos_w: torch.Tensor, |
|
q_size: Tuple[int, int], |
|
k_size: Tuple[int, int], |
|
) -> torch.Tensor: |
|
""" |
|
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. |
|
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py |
|
|
|
Args: |
|
attn (`torch.Tensor`): |
|
attention map. |
|
query (`torch.Tensor`): |
|
query q in the attention layer with shape (batch_size, query_height * query_width, channel). |
|
rel_pos_h (`torch.Tensor`): |
|
relative position embeddings (Lh, channel) for height axis. |
|
rel_pos_w (`torch.Tensor`): |
|
relative position embeddings (Lw, channel) for width axis. |
|
q_size (tuple): |
|
spatial sequence size of query q with (query_height, query_width). |
|
k_size (tuple): |
|
spatial sequence size of key k with (key_height, key_width). |
|
|
|
Returns: |
|
attn (`torch.Tensor`): |
|
attention map with added relative positional embeddings. |
|
""" |
|
query_height, query_width = q_size |
|
key_height, key_width = k_size |
|
relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h) |
|
relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w) |
|
|
|
batch_size, _, dim = query.shape |
|
reshaped_query = query.reshape(batch_size, query_height, query_width, dim) |
|
rel_h = torch.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height) |
|
rel_w = torch.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width) |
|
attn = attn.reshape(batch_size, query_height, query_width, key_height, key_width) |
|
attn = attn + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] |
|
attn = attn.reshape(batch_size, query_height * query_width, key_height * key_width) |
|
return attn |
|
|
|
def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor: |
|
batch_size, height, width, _ = hidden_states.shape |
|
|
|
qkv = ( |
|
self.qkv(hidden_states) |
|
.reshape(batch_size, height * width, 3, self.num_attention_heads, -1) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
|
|
query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind( |
|
0 |
|
) |
|
|
|
attn_weights = (query * self.scale) @ key.transpose(-2, -1) |
|
|
|
if self.use_rel_pos: |
|
attn_weights = self.add_decomposed_rel_pos( |
|
attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width) |
|
) |
|
|
|
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype) |
|
|
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
|
|
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1) |
|
attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1) |
|
|
|
attn_output = self.proj(attn_output) |
|
|
|
if output_attentions: |
|
outputs = (attn_output, attn_weights) |
|
else: |
|
outputs = (attn_output, None) |
|
|
|
return outputs |
|
|
|
|
|
class SamVisionLayer(nn.Module): |
|
def __init__(self, config, window_size): |
|
super().__init__() |
|
self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.attn = SamVisionAttention(config, window_size) |
|
self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.mlp = SamMLPBlock(config) |
|
self.window_size = window_size |
|
|
|
def window_partition( |
|
self, hidden_states: torch.Tensor, window_size: int |
|
) -> Tuple[torch.Tensor, Tuple[int, int]]: |
|
""" |
|
Args: |
|
Partition into non-overlapping windows with padding if needed. |
|
hidden_states (tensor): input tokens with [batch_size, height, width, channel]. window_size (int): window |
|
size. |
|
|
|
Returns: |
|
windows: windows after partition with [batch_size * num_windows, window_size, window_size, channel]. |
|
(pad_height, pad_width): padded height and width before partition |
|
""" |
|
batch_size, height, width, channel = hidden_states.shape |
|
|
|
pad_h = (window_size - height % window_size) % window_size |
|
pad_w = (window_size - width % window_size) % window_size |
|
hidden_states = F.pad(hidden_states, (0, 0, 0, pad_w, 0, pad_h)) |
|
pad_height, pad_width = height + pad_h, width + pad_w |
|
|
|
hidden_states = hidden_states.reshape( |
|
batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel |
|
) |
|
windows = ( |
|
hidden_states.permute(0, 1, 3, 2, 4, 5) |
|
.contiguous() |
|
.reshape(-1, window_size, window_size, channel) |
|
) |
|
return windows, (pad_height, pad_width) |
|
|
|
def window_unpartition( |
|
self, |
|
windows: torch.Tensor, |
|
window_size: int, |
|
padding_shape: Tuple[int, int], |
|
original_shape: Tuple[int, int], |
|
) -> torch.Tensor: |
|
""" |
|
Args: |
|
Window unpartition into original sequences and removing padding. |
|
hidden_states (tensor): |
|
input tokens with [batch_size * num_windows, window_size, window_size, channel]. |
|
window_size (int): |
|
window size. |
|
padding_shape (Tuple): |
|
padded height and width (pad_height, pad_width). |
|
original_shape (Tuple): original height and width (height, width) before padding. |
|
|
|
Returns: |
|
hidden_states: unpartitioned sequences with [batch_size, height, width, channel]. |
|
""" |
|
pad_height, pad_width = padding_shape |
|
height, width = original_shape |
|
batch_size = windows.shape[0] // (pad_height * pad_width // window_size // window_size) |
|
hidden_states = windows.reshape( |
|
batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1 |
|
) |
|
hidden_states = ( |
|
hidden_states.permute(0, 1, 3, 2, 4, 5) |
|
.contiguous() |
|
.reshape(batch_size, pad_height, pad_width, -1) |
|
) |
|
|
|
hidden_states = hidden_states[:, :height, :width, :].contiguous() |
|
return hidden_states |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor]: |
|
residual = hidden_states |
|
|
|
hidden_states = self.layer_norm1(hidden_states) |
|
|
|
if self.window_size > 0: |
|
height, width = hidden_states.shape[1], hidden_states.shape[2] |
|
hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size) |
|
|
|
hidden_states, attn_weights = self.attn( |
|
hidden_states=hidden_states, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
if self.window_size > 0: |
|
hidden_states = self.window_unpartition( |
|
hidden_states, self.window_size, padding_shape, (height, width) |
|
) |
|
|
|
hidden_states = residual + hidden_states |
|
layernorm_output = self.layer_norm2(hidden_states) |
|
hidden_states = hidden_states + self.mlp(layernorm_output) |
|
|
|
outputs = (hidden_states,) |
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class SamVisionNeck(nn.Module): |
|
def __init__(self, config: SamVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.conv1 = nn.Conv2d(config.hidden_size, config.output_channels, kernel_size=1, bias=False) |
|
self.layer_norm1 = SamLayerNorm(config.output_channels, data_format="channels_first") |
|
self.conv2 = nn.Conv2d( |
|
config.output_channels, config.output_channels, kernel_size=3, padding=1, bias=False |
|
) |
|
self.layer_norm2 = SamLayerNorm(config.output_channels, data_format="channels_first") |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = hidden_states.permute(0, 3, 1, 2) |
|
hidden_states = self.conv1(hidden_states) |
|
hidden_states = self.layer_norm1(hidden_states) |
|
|
|
hidden_states = self.conv2(hidden_states) |
|
hidden_states = self.layer_norm2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class SamVisionEncoder(nn.Module): |
|
def __init__(self, config: SamVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.image_size = config.image_size |
|
|
|
self.patch_embed = SamPatchEmbeddings(config) |
|
|
|
self.pos_embed = None |
|
if config.use_abs_pos: |
|
|
|
self.pos_embed = nn.Parameter( |
|
torch.zeros( |
|
1, |
|
config.image_size // config.patch_size, |
|
config.image_size // config.patch_size, |
|
config.hidden_size, |
|
) |
|
) |
|
|
|
self.layers = nn.ModuleList() |
|
for i in range(config.num_hidden_layers): |
|
layer = SamVisionLayer( |
|
config, |
|
window_size=config.window_size if i not in config.global_attn_indexes else 0, |
|
) |
|
self.layers.append(layer) |
|
|
|
self.neck = SamVisionNeck(config) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def get_input_embeddings(self): |
|
return self.patch_embed |
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SamVisionEncoderOutput]: |
|
output_attentions = ( |
|
output_attentions if output_attentions is not None else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
hidden_states = self.patch_embed(pixel_values) |
|
if self.pos_embed is not None: |
|
hidden_states = hidden_states + self.pos_embed |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
for i, layer_module in enumerate(self.layers): |
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.__call__, |
|
hidden_states, |
|
) |
|
else: |
|
layer_outputs = layer_module(hidden_states, output_attentions=output_attentions) |
|
|
|
hidden_states = layer_outputs[0] |
|
if output_hidden_states and layer_module.window_size == 0: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
hidden_states = self.neck(hidden_states) |
|
|
|
if not return_dict: |
|
outputs = (hidden_states,) |
|
if output_hidden_states: |
|
outputs = outputs + (all_hidden_states,) |
|
if output_attentions: |
|
outputs = outputs + (all_self_attentions,) |
|
return outputs |
|
|
|
return SamVisionEncoderOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class SamHQPreTrainedModel(PreTrainedModel): |
|
config_class = SamHQConfig |
|
base_model_prefix = "sam_hq" |
|
main_input_name = "pixel_values" |
|
_no_split_modules = ["SamVisionAttention"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
SAM_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`SamConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
SAM_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for |
|
details. |
|
input_points (`torch.FloatTensor` of shape `(batch_size, num_points, 2)`): |
|
Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much |
|
better results. The points can be obtained by passing a list of list of list to the processor that will |
|
create corresponding `torch` tensors of dimension 4. The first dimension is the image batch size, the |
|
second dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict |
|
per input point), the third dimension is the number of points per segmentation mask (it is possible to pass |
|
multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal) |
|
coordinates of the point. If a different number of points is passed either for each image, or for each |
|
mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the |
|
computation of the embedding will be skipped for these points using the labels. |
|
input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points)`): |
|
Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the |
|
official implementation, there are 3 types of labels |
|
|
|
- `1`: the point is a point that contains the object of interest |
|
- `0`: the point is a point that does not contain the object of interest |
|
- `-1`: the point corresponds to the background |
|
|
|
We added the label: |
|
|
|
- `-10`: the point is a padding point, thus should be ignored by the prompt encoder |
|
|
|
The padding labels should be automatically done by the processor. |
|
input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes, 4)`): |
|
Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to |
|
much better generated masks. The boxes can be obtained by passing a list of list of list to the processor, |
|
that will generate a `torch` tensor, with each dimension corresponding respectively to the image batch |
|
size, the number of boxes per image and the coordinates of the top left and botton right point of the box. |
|
In the order (`x1`, `y1`, `x2`, `y2`): |
|
|
|
- `x1`: the x coordinate of the top left point of the input box |
|
- `y1`: the y coordinate of the top left point of the input box |
|
- `x2`: the x coordinate of the bottom right point of the input box |
|
- `y2`: the y coordinate of the bottom right point of the input box |
|
|
|
input_masks (`torch.FloatTensor` of shape `(batch_size, image_size, image_size)`): |
|
SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to |
|
generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be |
|
manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`). |
|
|
|
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_channels, window_size, window_size)`): |
|
Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory |
|
efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings` |
|
method, and then feed them to the `forward` method instead of feeding the `pixel_values`. |
|
multimask_output (`bool`, *optional*): |
|
In the original implementation and paper, the model always outputs 3 masks per image (or per point / per |
|
bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the |
|
"best" mask, by specifying `multimask_output=False`. |
|
attention_similarity (`torch.FloatTensor`, *optional*): |
|
Attention similarity tensor, to be provided to the mask decoder for target-guided attention in case the |
|
model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048). |
|
target_embedding (`torch.FloatTensor`, *optional*): |
|
Embedding of the target concept, to be provided to the mask decoder for target-semantic prompting in case |
|
the model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"Segment Anything Model (SAM) for generating segmentation masks, given an input image and ", |
|
" optional 2D location and bounding boxes.", |
|
SAM_START_DOCSTRING, |
|
) |
|
class SamHQModel(SamHQPreTrainedModel): |
|
_tied_weights_keys = ["prompt_encoder.shared_embedding.positional_embedding"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.shared_image_embedding = SamPositionalEmbedding(config.vision_config) |
|
|
|
self.vision_encoder = SamVisionEncoder(config.vision_config) |
|
self.prompt_encoder = SamPromptEncoder(config.prompt_encoder_config, self.shared_image_embedding) |
|
if "vision_encoder_dim" not in config.mask_decoder_config.to_dict(): |
|
config.mask_decoder_config.vision_encoder_dim = config.vision_config.hidden_size |
|
self.mask_decoder = SamMaskDecoderHQ(config.mask_decoder_config) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.vision_encoder.get_input_embeddings() |
|
|
|
def get_image_wide_positional_embeddings(self): |
|
size = self.config.prompt_encoder_config.image_embedding_size |
|
target_device = self.shared_image_embedding.positional_embedding.device |
|
target_dtype = self.shared_image_embedding.positional_embedding.dtype |
|
grid = torch.ones((size, size), device=target_device, dtype=target_dtype) |
|
y_embed = grid.cumsum(dim=0) - 0.5 |
|
x_embed = grid.cumsum(dim=1) - 0.5 |
|
y_embed = y_embed / size |
|
x_embed = x_embed / size |
|
|
|
positional_embedding = self.shared_image_embedding(torch.stack([x_embed, y_embed], dim=-1)) |
|
return positional_embedding.permute(2, 0, 1).unsqueeze(0) |
|
|
|
@torch.no_grad() |
|
def get_image_embeddings( |
|
self, |
|
pixel_values, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
r""" |
|
Returns the image embeddings by passing the pixel values through the vision encoder. |
|
|
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Input pixel values |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
|
|
""" |
|
vision_output = self.vision_encoder( |
|
pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
image_embeddings = vision_output[0] |
|
return image_embeddings |
|
|
|
@torch.no_grad() |
|
def get_prompt_embeddings( |
|
self, |
|
input_points: Optional[torch.FloatTensor] = None, |
|
input_labels: Optional[torch.LongTensor] = None, |
|
input_boxes: Optional[torch.FloatTensor] = None, |
|
input_masks: Optional[torch.LongTensor] = None, |
|
): |
|
r""" |
|
Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder. |
|
|
|
Args: |
|
input_points (`torch.FloatTensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`): |
|
Optional input points for the prompt encoder. The padding of the point is automatically done by the |
|
processor. `point_batch_size` refers to the number of masks that we want the model to predict per |
|
point. The model will output `point_batch_size` times 3 masks in total. |
|
input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points_per_image)`): |
|
Optional input labels for the prompt encoder. The padding of the labels is automatically done by the |
|
processor, or can be fed by the user. |
|
input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes_per_image, 4)`): |
|
Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the |
|
processor. users can also pass manually the input boxes. |
|
input_masks (`torch.LongTensor` of shape `(batch_size, image_size, image_size)`): |
|
Optional input masks for the prompt encoder. |
|
""" |
|
prompt_output = self.prompt_encoder( |
|
input_points=input_points, |
|
input_labels=input_labels, |
|
input_boxes=input_boxes, |
|
input_masks=input_masks, |
|
) |
|
return prompt_output |
|
|
|
@add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
input_points: Optional[torch.FloatTensor] = None, |
|
input_labels: Optional[torch.LongTensor] = None, |
|
input_boxes: Optional[torch.FloatTensor] = None, |
|
input_masks: Optional[torch.LongTensor] = None, |
|
image_embeddings: Optional[torch.FloatTensor] = None, |
|
multimask_output: bool = False, |
|
hq_token_only: bool = True, |
|
attention_similarity: Optional[torch.FloatTensor] = None, |
|
target_embedding: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
) -> List[Dict[str, torch.Tensor]]: |
|
r""" |
|
Example: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoModel, AutoProcessor |
|
|
|
>>> model = AutoModel.from_pretrained("facebook/sam-vit-base") |
|
>>> processor = AutoProcessor.from_pretrained("facebook/sam-vit-base") |
|
|
|
>>> img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-car.png" |
|
>>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") |
|
>>> input_points = [[[400, 650]]] # 2D location of a window on the car |
|
>>> inputs = processor(images=raw_image, input_points=input_points, return_tensors="pt") |
|
|
|
>>> # Get segmentation mask |
|
>>> outputs = model(**inputs) |
|
|
|
>>> # Postprocess masks |
|
>>> masks = processor.post_process_masks( |
|
... outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"] |
|
... ) |
|
``` |
|
""" |
|
output_attentions = ( |
|
output_attentions if output_attentions is not None else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None and image_embeddings is None: |
|
raise ValueError("Either pixel_values or image_embeddings must be provided.") |
|
|
|
if pixel_values is not None and image_embeddings is not None: |
|
raise ValueError("Only one of pixel_values and image_embeddings can be provided.") |
|
|
|
if input_points is not None and len(input_points.shape) != 4: |
|
raise ValueError( |
|
"The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.", |
|
" got {}.".format(input_points.shape), |
|
) |
|
if input_boxes is not None and len(input_boxes.shape) != 3: |
|
raise ValueError( |
|
"The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.", |
|
" got {}.".format(input_boxes.shape), |
|
) |
|
if input_points is not None and input_boxes is not None: |
|
point_batch_size = input_points.shape[1] |
|
box_batch_size = input_boxes.shape[1] |
|
if point_batch_size != box_batch_size: |
|
raise ValueError( |
|
"You should provide as many bounding boxes as input points per box. Got {} and {}.".format( |
|
point_batch_size, box_batch_size |
|
) |
|
) |
|
|
|
image_positional_embeddings = self.get_image_wide_positional_embeddings() |
|
|
|
batch_size = pixel_values.shape[0] if pixel_values is not None else image_embeddings.shape[0] |
|
image_positional_embeddings = image_positional_embeddings.repeat(batch_size, 1, 1, 1) |
|
|
|
vision_attentions = None |
|
vision_hidden_states = None |
|
|
|
if pixel_values is not None: |
|
vision_outputs = self.vision_encoder( |
|
pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
image_embeddings = vision_outputs[0] |
|
|
|
if output_hidden_states: |
|
vision_hidden_states = vision_outputs[1] |
|
if output_attentions: |
|
vision_attentions = vision_outputs[-1] |
|
|
|
if input_points is not None and input_labels is None: |
|
input_labels = torch.ones_like( |
|
input_points[:, :, :, 0], dtype=torch.int, device=input_points.device |
|
) |
|
|
|
if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]: |
|
raise ValueError( |
|
"The batch size of the image embeddings and the input points must be the same. ", |
|
"Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]), |
|
" if you want to pass multiple points for the same image, make sure that you passed ", |
|
" input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ", |
|
" input_labels of shape (batch_size, point_batch_size, num_points_per_image)", |
|
) |
|
|
|
sparse_embeddings, dense_embeddings = self.prompt_encoder( |
|
input_points=input_points, |
|
input_labels=input_labels, |
|
input_boxes=input_boxes, |
|
input_masks=input_masks, |
|
) |
|
|
|
low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder( |
|
image_embeddings=image_embeddings, |
|
image_positional_embeddings=image_positional_embeddings, |
|
sparse_prompt_embeddings=sparse_embeddings, |
|
dense_prompt_embeddings=dense_embeddings, |
|
multimask_output=multimask_output, |
|
intermediate_vision_embeddings=vision_hidden_states[1:], |
|
hq_token_only=hq_token_only, |
|
attention_similarity=attention_similarity, |
|
target_embedding=target_embedding, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
if not return_dict: |
|
output = (iou_predictions, low_res_masks) |
|
if output_hidden_states: |
|
output = output + (vision_hidden_states,) |
|
|
|
if output_attentions: |
|
output = output + (vision_attentions, mask_decoder_attentions) |
|
return output |
|
|
|
return SamImageSegmentationOutput( |
|
iou_scores=iou_predictions, |
|
pred_masks=low_res_masks, |
|
vision_hidden_states=vision_hidden_states, |
|
vision_attentions=vision_attentions, |
|
mask_decoder_attentions=mask_decoder_attentions, |
|
) |
|
|