add segm model
Browse files
mmdet/segm/mmdet_dd-person_mask2former.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ff5ebfaacfef171c8043ef867c1035a2ab9949eca9813c1028746e85e035915
|
3 |
+
size 528418860
|
mmdet/segm/mmdet_dd-person_mask2former.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'CocoDataset'
|
2 |
+
data_root = 'data/dd-person_mask2former/'
|
3 |
+
img_norm_cfg = dict(
|
4 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile', to_float32=True),
|
7 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
8 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
9 |
+
dict(
|
10 |
+
type='Resize',
|
11 |
+
img_scale=(1024, 1024),
|
12 |
+
ratio_range=(0.1, 2.0),
|
13 |
+
multiscale_mode='range',
|
14 |
+
keep_ratio=True),
|
15 |
+
dict(
|
16 |
+
type='RandomCrop',
|
17 |
+
crop_size=(1024, 1024),
|
18 |
+
crop_type='absolute',
|
19 |
+
recompute_bbox=True,
|
20 |
+
allow_negative_crop=True),
|
21 |
+
dict(
|
22 |
+
type='FilterAnnotations', min_gt_bbox_wh=(1e-05, 1e-05), by_mask=True),
|
23 |
+
dict(
|
24 |
+
type='Pad',
|
25 |
+
size=(1024, 1024),
|
26 |
+
pad_val=dict(img=(128, 128, 128), masks=0, seg=255)),
|
27 |
+
dict(
|
28 |
+
type='Normalize',
|
29 |
+
mean=[123.675, 116.28, 103.53],
|
30 |
+
std=[58.395, 57.12, 57.375],
|
31 |
+
to_rgb=True),
|
32 |
+
dict(type='DefaultFormatBundle', img_to_float=True),
|
33 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
|
34 |
+
]
|
35 |
+
test_pipeline = [
|
36 |
+
dict(type='LoadImageFromFile'),
|
37 |
+
dict(
|
38 |
+
type='MultiScaleFlipAug',
|
39 |
+
img_scale=(1333, 800),
|
40 |
+
flip=False,
|
41 |
+
transforms=[
|
42 |
+
dict(type='Resize', keep_ratio=True),
|
43 |
+
dict(type='RandomFlip'),
|
44 |
+
dict(
|
45 |
+
type='Pad',
|
46 |
+
size_divisor=32,
|
47 |
+
pad_val=dict(img=(128, 128, 128), masks=0, seg=255)),
|
48 |
+
dict(
|
49 |
+
type='Normalize',
|
50 |
+
mean=[123.675, 116.28, 103.53],
|
51 |
+
std=[58.395, 57.12, 57.375],
|
52 |
+
to_rgb=True),
|
53 |
+
dict(type='ImageToTensor', keys=['img']),
|
54 |
+
dict(type='Collect', keys=['img'])
|
55 |
+
])
|
56 |
+
]
|
57 |
+
data = dict(
|
58 |
+
samples_per_gpu=1,
|
59 |
+
workers_per_gpu=1,
|
60 |
+
train=dict(
|
61 |
+
type='CocoDataset',
|
62 |
+
ann_file='data/dd-person_mask2former/annotations/train.json',
|
63 |
+
img_prefix='data/dd-person_mask2former/train/',
|
64 |
+
pipeline=[
|
65 |
+
dict(type='LoadImageFromFile', to_float32=True),
|
66 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
67 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
68 |
+
dict(
|
69 |
+
type='Resize',
|
70 |
+
img_scale=(1024, 1024),
|
71 |
+
ratio_range=(0.1, 2.0),
|
72 |
+
multiscale_mode='range',
|
73 |
+
keep_ratio=True),
|
74 |
+
dict(
|
75 |
+
type='RandomCrop',
|
76 |
+
crop_size=(1024, 1024),
|
77 |
+
crop_type='absolute',
|
78 |
+
recompute_bbox=True,
|
79 |
+
allow_negative_crop=True),
|
80 |
+
dict(
|
81 |
+
type='FilterAnnotations',
|
82 |
+
min_gt_bbox_wh=(1e-05, 1e-05),
|
83 |
+
by_mask=True),
|
84 |
+
dict(
|
85 |
+
type='Pad',
|
86 |
+
size=(1024, 1024),
|
87 |
+
pad_val=dict(img=(128, 128, 128), masks=0, seg=255)),
|
88 |
+
dict(
|
89 |
+
type='Normalize',
|
90 |
+
mean=[123.675, 116.28, 103.53],
|
91 |
+
std=[58.395, 57.12, 57.375],
|
92 |
+
to_rgb=True),
|
93 |
+
dict(type='DefaultFormatBundle', img_to_float=True),
|
94 |
+
dict(
|
95 |
+
type='Collect',
|
96 |
+
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
|
97 |
+
]),
|
98 |
+
val=dict(
|
99 |
+
type='CocoDataset',
|
100 |
+
ann_file='data/dd-person_mask2former/annotations/val.json',
|
101 |
+
img_prefix='data/dd-person_mask2former/val/',
|
102 |
+
pipeline=[
|
103 |
+
dict(type='LoadImageFromFile'),
|
104 |
+
dict(
|
105 |
+
type='MultiScaleFlipAug',
|
106 |
+
img_scale=(1333, 800),
|
107 |
+
flip=False,
|
108 |
+
transforms=[
|
109 |
+
dict(type='Resize', keep_ratio=True),
|
110 |
+
dict(type='RandomFlip'),
|
111 |
+
dict(
|
112 |
+
type='Pad',
|
113 |
+
size_divisor=32,
|
114 |
+
pad_val=dict(img=(128, 128, 128), masks=0, seg=255)),
|
115 |
+
dict(
|
116 |
+
type='Normalize',
|
117 |
+
mean=[123.675, 116.28, 103.53],
|
118 |
+
std=[58.395, 57.12, 57.375],
|
119 |
+
to_rgb=True),
|
120 |
+
dict(type='ImageToTensor', keys=['img']),
|
121 |
+
dict(type='Collect', keys=['img'])
|
122 |
+
])
|
123 |
+
]),
|
124 |
+
test=dict(
|
125 |
+
type='CocoDataset',
|
126 |
+
ann_file='data/dd-person_mask2former/annotations/val.json',
|
127 |
+
img_prefix='data/dd-person_mask2former/val/',
|
128 |
+
pipeline=[
|
129 |
+
dict(type='LoadImageFromFile'),
|
130 |
+
dict(
|
131 |
+
type='MultiScaleFlipAug',
|
132 |
+
img_scale=(1333, 800),
|
133 |
+
flip=False,
|
134 |
+
transforms=[
|
135 |
+
dict(type='Resize', keep_ratio=True),
|
136 |
+
dict(type='RandomFlip'),
|
137 |
+
dict(
|
138 |
+
type='Pad',
|
139 |
+
size_divisor=32,
|
140 |
+
pad_val=dict(img=(128, 128, 128), masks=0, seg=255)),
|
141 |
+
dict(
|
142 |
+
type='Normalize',
|
143 |
+
mean=[123.675, 116.28, 103.53],
|
144 |
+
std=[58.395, 57.12, 57.375],
|
145 |
+
to_rgb=True),
|
146 |
+
dict(type='ImageToTensor', keys=['img']),
|
147 |
+
dict(type='Collect', keys=['img'])
|
148 |
+
])
|
149 |
+
]))
|
150 |
+
evaluation = dict(
|
151 |
+
interval=2000,
|
152 |
+
metric=['bbox', 'segm'],
|
153 |
+
dynamic_intervals=[(400001, 400000)])
|
154 |
+
checkpoint_config = dict(
|
155 |
+
interval=2000, by_epoch=False, save_last=True, max_keep_ckpts=10)
|
156 |
+
log_config = dict(
|
157 |
+
interval=50,
|
158 |
+
hooks=[
|
159 |
+
dict(type='TextLoggerHook', by_epoch=False),
|
160 |
+
dict(type='TensorboardLoggerHook', by_epoch=False)
|
161 |
+
])
|
162 |
+
custom_hooks = [dict(type='NumClassCheckHook')]
|
163 |
+
dist_params = dict(backend='nccl')
|
164 |
+
log_level = 'INFO'
|
165 |
+
load_from = 'checkpoints/mask2former_r50_lsj_8x2_50e_coco_20220506_191028-8e96e88b.pth'
|
166 |
+
resume_from = 'checkpoints/mask2former_r50_lsj_8x2_50e_coco_20220506_191028-8e96e88b.pth'
|
167 |
+
workflow = [('train', 2000)]
|
168 |
+
opencv_num_threads = 0
|
169 |
+
mp_start_method = 'fork'
|
170 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
171 |
+
num_things_classes = 1
|
172 |
+
num_stuff_classes = 0
|
173 |
+
num_classes = 1
|
174 |
+
model = dict(
|
175 |
+
type='Mask2Former',
|
176 |
+
backbone=dict(
|
177 |
+
type='ResNet',
|
178 |
+
depth=50,
|
179 |
+
num_stages=4,
|
180 |
+
out_indices=(0, 1, 2, 3),
|
181 |
+
frozen_stages=-1,
|
182 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
183 |
+
norm_eval=True,
|
184 |
+
style='pytorch',
|
185 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
186 |
+
panoptic_head=dict(
|
187 |
+
type='Mask2FormerHead',
|
188 |
+
in_channels=[256, 512, 1024, 2048],
|
189 |
+
strides=[4, 8, 16, 32],
|
190 |
+
feat_channels=256,
|
191 |
+
out_channels=256,
|
192 |
+
num_things_classes=1,
|
193 |
+
num_stuff_classes=0,
|
194 |
+
num_queries=100,
|
195 |
+
num_transformer_feat_level=3,
|
196 |
+
pixel_decoder=dict(
|
197 |
+
type='MSDeformAttnPixelDecoder',
|
198 |
+
num_outs=3,
|
199 |
+
norm_cfg=dict(type='GN', num_groups=32),
|
200 |
+
act_cfg=dict(type='ReLU'),
|
201 |
+
encoder=dict(
|
202 |
+
type='DetrTransformerEncoder',
|
203 |
+
num_layers=6,
|
204 |
+
transformerlayers=dict(
|
205 |
+
type='BaseTransformerLayer',
|
206 |
+
attn_cfgs=dict(
|
207 |
+
type='MultiScaleDeformableAttention',
|
208 |
+
embed_dims=256,
|
209 |
+
num_heads=8,
|
210 |
+
num_levels=3,
|
211 |
+
num_points=4,
|
212 |
+
im2col_step=64,
|
213 |
+
dropout=0.0,
|
214 |
+
batch_first=False,
|
215 |
+
norm_cfg=None,
|
216 |
+
init_cfg=None),
|
217 |
+
ffn_cfgs=dict(
|
218 |
+
type='FFN',
|
219 |
+
embed_dims=256,
|
220 |
+
feedforward_channels=1024,
|
221 |
+
num_fcs=2,
|
222 |
+
ffn_drop=0.0,
|
223 |
+
act_cfg=dict(type='ReLU', inplace=True)),
|
224 |
+
operation_order=('self_attn', 'norm', 'ffn', 'norm')),
|
225 |
+
init_cfg=None),
|
226 |
+
positional_encoding=dict(
|
227 |
+
type='SinePositionalEncoding', num_feats=128, normalize=True),
|
228 |
+
init_cfg=None),
|
229 |
+
enforce_decoder_input_project=False,
|
230 |
+
positional_encoding=dict(
|
231 |
+
type='SinePositionalEncoding', num_feats=128, normalize=True),
|
232 |
+
transformer_decoder=dict(
|
233 |
+
type='DetrTransformerDecoder',
|
234 |
+
return_intermediate=True,
|
235 |
+
num_layers=9,
|
236 |
+
transformerlayers=dict(
|
237 |
+
type='DetrTransformerDecoderLayer',
|
238 |
+
attn_cfgs=dict(
|
239 |
+
type='MultiheadAttention',
|
240 |
+
embed_dims=256,
|
241 |
+
num_heads=8,
|
242 |
+
attn_drop=0.0,
|
243 |
+
proj_drop=0.0,
|
244 |
+
dropout_layer=None,
|
245 |
+
batch_first=False),
|
246 |
+
ffn_cfgs=dict(
|
247 |
+
embed_dims=256,
|
248 |
+
feedforward_channels=2048,
|
249 |
+
num_fcs=2,
|
250 |
+
act_cfg=dict(type='ReLU', inplace=True),
|
251 |
+
ffn_drop=0.0,
|
252 |
+
dropout_layer=None,
|
253 |
+
add_identity=True),
|
254 |
+
feedforward_channels=2048,
|
255 |
+
operation_order=('cross_attn', 'norm', 'self_attn', 'norm',
|
256 |
+
'ffn', 'norm')),
|
257 |
+
init_cfg=None),
|
258 |
+
loss_cls=dict(
|
259 |
+
type='CrossEntropyLoss',
|
260 |
+
use_sigmoid=False,
|
261 |
+
loss_weight=2.0,
|
262 |
+
reduction='mean',
|
263 |
+
class_weight=[1.0, 0.1]),
|
264 |
+
loss_mask=dict(
|
265 |
+
type='CrossEntropyLoss',
|
266 |
+
use_sigmoid=True,
|
267 |
+
reduction='mean',
|
268 |
+
loss_weight=5.0),
|
269 |
+
loss_dice=dict(
|
270 |
+
type='DiceLoss',
|
271 |
+
use_sigmoid=True,
|
272 |
+
activate=True,
|
273 |
+
reduction='mean',
|
274 |
+
naive_dice=True,
|
275 |
+
eps=1.0,
|
276 |
+
loss_weight=5.0)),
|
277 |
+
panoptic_fusion_head=dict(
|
278 |
+
type='MaskFormerFusionHead',
|
279 |
+
num_things_classes=1,
|
280 |
+
num_stuff_classes=0,
|
281 |
+
loss_panoptic=None,
|
282 |
+
init_cfg=None),
|
283 |
+
train_cfg=dict(
|
284 |
+
num_points=12544,
|
285 |
+
oversample_ratio=3.0,
|
286 |
+
importance_sample_ratio=0.75,
|
287 |
+
assigner=dict(
|
288 |
+
type='MaskHungarianAssigner',
|
289 |
+
cls_cost=dict(type='ClassificationCost', weight=2.0),
|
290 |
+
mask_cost=dict(
|
291 |
+
type='CrossEntropyLossCost', weight=5.0, use_sigmoid=True),
|
292 |
+
dice_cost=dict(
|
293 |
+
type='DiceCost', weight=5.0, pred_act=True, eps=1.0)),
|
294 |
+
sampler=dict(type='MaskPseudoSampler')),
|
295 |
+
test_cfg=dict(
|
296 |
+
panoptic_on=False,
|
297 |
+
semantic_on=False,
|
298 |
+
instance_on=True,
|
299 |
+
max_per_image=100,
|
300 |
+
iou_thr=0.8,
|
301 |
+
filter_low_score=True),
|
302 |
+
init_cfg=None)
|
303 |
+
image_size = (1024, 1024)
|
304 |
+
embed_multi = dict(lr_mult=1.0, decay_mult=0.0)
|
305 |
+
optimizer = dict(
|
306 |
+
type='AdamW',
|
307 |
+
lr=0.0001,
|
308 |
+
weight_decay=0.05,
|
309 |
+
eps=1e-08,
|
310 |
+
betas=(0.9, 0.999),
|
311 |
+
paramwise_cfg=dict(
|
312 |
+
custom_keys=dict(
|
313 |
+
backbone=dict(lr_mult=0.1, decay_mult=1.0),
|
314 |
+
query_embed=dict(lr_mult=1.0, decay_mult=0.0),
|
315 |
+
query_feat=dict(lr_mult=1.0, decay_mult=0.0),
|
316 |
+
level_embed=dict(lr_mult=1.0, decay_mult=0.0)),
|
317 |
+
norm_decay_mult=0.0))
|
318 |
+
optimizer_config = dict(grad_clip=dict(max_norm=0.01, norm_type=2))
|
319 |
+
lr_config = dict(
|
320 |
+
policy='step',
|
321 |
+
gamma=0.1,
|
322 |
+
by_epoch=False,
|
323 |
+
step=[327778, 355092],
|
324 |
+
warmup='linear',
|
325 |
+
warmup_by_epoch=False,
|
326 |
+
warmup_ratio=1.0,
|
327 |
+
warmup_iters=10)
|
328 |
+
max_iters = 400000
|
329 |
+
runner = dict(type='IterBasedRunner', max_iters=400000)
|
330 |
+
interval = 2000
|
331 |
+
dynamic_intervals = [(400001, 400000)]
|
332 |
+
pad_cfg = dict(img=(128, 128, 128), masks=0, seg=255)
|
333 |
+
work_dir = './work_dirs\dd-person_mask2former'
|
334 |
+
auto_resume = False
|
335 |
+
gpu_ids = [0]
|