Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
inference: false
|
7 |
+
tags:
|
8 |
+
- transformers
|
9 |
+
- gguf
|
10 |
+
- imatrix
|
11 |
+
- aya-expanse-8b
|
12 |
+
---
|
13 |
+
Quantizations of https://huggingface.co/CohereForAI/aya-expanse-8b
|
14 |
+
|
15 |
+
|
16 |
+
### Inference Clients/UIs
|
17 |
+
* [llama.cpp](https://github.com/ggerganov/llama.cpp)
|
18 |
+
* [KoboldCPP](https://github.com/LostRuins/koboldcpp)
|
19 |
+
* [ollama](https://github.com/ollama/ollama)
|
20 |
+
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
21 |
+
* [GPT4All](https://github.com/nomic-ai/gpt4all)
|
22 |
+
* [jan](https://github.com/janhq/jan)
|
23 |
+
---
|
24 |
+
|
25 |
+
# From original readme
|
26 |
+
|
27 |
+
Aya Expanse is an open-weight research release of a model with highly advanced multilingual capabilities. It focuses on pairing a highly performant pre-trained [Command family](https://huggingface.co/CohereForAI/c4ai-command-r-plus) of models with the result of a year’s dedicated research from [Cohere For AI](https://cohere.for.ai/), including [data arbitrage](https://arxiv.org/pdf/2408.14960), [multilingual preference training](https://arxiv.org/abs/2407.02552), [safety tuning](https://arxiv.org/abs/2406.18682), and [model merging](https://arxiv.org/abs/2410.10801). The result is a powerful multilingual large language model serving 23 languages.
|
28 |
+
|
29 |
+
We cover 23 languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese
|
30 |
+
|
31 |
+
This model card corresponds to the 8-billion version of the Aya Expanse model. We also released an 32-billion version which you can find [here](https://huggingface.co/CohereForAI/aya-expanse-32B).
|
32 |
+
|
33 |
+
- Developed by: [Cohere For AI](https://cohere.for.ai/)
|
34 |
+
- Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/)
|
35 |
+
- License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)
|
36 |
+
- Model: Aya Expanse 8B
|
37 |
+
- Model Size: 8 billion parameters
|
38 |
+
|
39 |
+
**Try Aya Expanse**
|
40 |
+
|
41 |
+
Before downloading the weights, you can try out Aya Expanse in our hosted [Hugging Face Space](https://huggingface.co/spaces/CohereForAI/aya_expanse).
|
42 |
+
|
43 |
+
|
44 |
+
### Usage
|
45 |
+
|
46 |
+
Please install transformers from the source repository.
|
47 |
+
|
48 |
+
```python
|
49 |
+
# pip install 'git+https://github.com/huggingface/transformers.git'
|
50 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
51 |
+
|
52 |
+
model_id = "CohereForAI/aya-expanse-8b"
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
55 |
+
|
56 |
+
# Format the message with the chat template
|
57 |
+
messages = [{"role": "user", "content": "Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz"}]
|
58 |
+
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
59 |
+
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
|
60 |
+
|
61 |
+
gen_tokens = model.generate(
|
62 |
+
input_ids,
|
63 |
+
max_new_tokens=100,
|
64 |
+
do_sample=True,
|
65 |
+
temperature=0.3,
|
66 |
+
)
|
67 |
+
|
68 |
+
gen_text = tokenizer.decode(gen_tokens[0])
|
69 |
+
print(gen_text)
|
70 |
+
```
|