duyntnet commited on
Commit
d17da2c
1 Parent(s): 1c8cee9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ inference: false
7
+ tags:
8
+ - transformers
9
+ - gguf
10
+ - imatrix
11
+ - granite-3.0-8b-instruct
12
+ ---
13
+ Quantizations of https://huggingface.co/ibm-granite/granite-3.0-8b-instruct
14
+
15
+
16
+ ### Inference Clients/UIs
17
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp)
18
+ * [KoboldCPP](https://github.com/LostRuins/koboldcpp)
19
+ * [ollama](https://github.com/ollama/ollama)
20
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
21
+ * [GPT4All](https://github.com/nomic-ai/gpt4all)
22
+ * [jan](https://github.com/janhq/jan)
23
+ ---
24
+
25
+ # From original readme
26
+
27
+ **Model Summary:**
28
+ Granite-3.0-8B-Instruct is a 8B parameter model finetuned from *Granite-3.0-8B-Base* using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging.
29
+
30
+ - **Developers:** Granite Team, IBM
31
+ - **GitHub Repository:** [ibm-granite/granite-3.0-language-models](https://github.com/ibm-granite/granite-3.0-language-models)
32
+ - **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
33
+ - **Paper:** [Granite 3.0 Language Models](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf)
34
+ - **Release Date**: October 21st, 2024
35
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
36
+
37
+ **Supported Languages:**
38
+ English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.0 models for languages beyond these 12 languages.
39
+
40
+ **Intended use:**
41
+ The model is designed to respond to general instructions and can be used to build AI assistants for multiple domains, including business applications.
42
+
43
+ *Capabilities*
44
+ * Summarization
45
+ * Text classification
46
+ * Text extraction
47
+ * Question-answering
48
+ * Retrieval Augmented Generation (RAG)
49
+ * Code related tasks
50
+ * Function-calling tasks
51
+ * Multilingual dialog use cases
52
+
53
+ **Generation:**
54
+ This is a simple example of how to use Granite-3.0-8B-Instruct model.
55
+
56
+ Install the following libraries:
57
+
58
+ ```shell
59
+ pip install torch torchvision torchaudio
60
+ pip install accelerate
61
+ pip install transformers
62
+ ```
63
+ Then, copy the snippet from the section that is relevant for your use case.
64
+
65
+ ```python
66
+ import torch
67
+ from transformers import AutoModelForCausalLM, AutoTokenizer
68
+
69
+ device = "auto"
70
+ model_path = "ibm-granite/granite-3.0-8b-instruct"
71
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
72
+ # drop device_map if running on CPU
73
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
74
+ model.eval()
75
+ # change input text as desired
76
+ chat = [
77
+ { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
78
+ ]
79
+ chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
80
+ # tokenize the text
81
+ input_tokens = tokenizer(chat, return_tensors="pt").to(device)
82
+ # generate output tokens
83
+ output = model.generate(**input_tokens,
84
+ max_new_tokens=100)
85
+ # decode output tokens into text
86
+ output = tokenizer.batch_decode(output)
87
+ # print output
88
+ print(output)
89
+ ```