dvs commited on
Commit
4197354
1 Parent(s): cc6050d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: swin-tiny-patch4-window7-224-mulder-v-scully-colab2
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 1.0
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # swin-tiny-patch4-window7-224-mulder-v-scully-colab2
31
+
32
+ This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.3970
35
+ - Accuracy: 1.0
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 128
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 20
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | No log | 1.0 | 1 | 0.6899 | 0.5 |
70
+ | No log | 2.0 | 2 | 0.6701 | 0.25 |
71
+ | No log | 3.0 | 3 | 0.6309 | 0.5 |
72
+ | No log | 4.0 | 4 | 0.6049 | 0.5 |
73
+ | No log | 5.0 | 5 | 0.5828 | 0.5 |
74
+ | No log | 6.0 | 6 | 0.5650 | 0.75 |
75
+ | No log | 7.0 | 7 | 0.5486 | 0.75 |
76
+ | No log | 8.0 | 8 | 0.5344 | 1.0 |
77
+ | No log | 9.0 | 9 | 0.5240 | 1.0 |
78
+ | 0.2978 | 10.0 | 10 | 0.5149 | 1.0 |
79
+ | 0.2978 | 11.0 | 11 | 0.5066 | 1.0 |
80
+ | 0.2978 | 12.0 | 12 | 0.4980 | 1.0 |
81
+ | 0.2978 | 13.0 | 13 | 0.4880 | 1.0 |
82
+ | 0.2978 | 14.0 | 14 | 0.4699 | 1.0 |
83
+ | 0.2978 | 15.0 | 15 | 0.4507 | 1.0 |
84
+ | 0.2978 | 16.0 | 16 | 0.4310 | 1.0 |
85
+ | 0.2978 | 17.0 | 17 | 0.4155 | 1.0 |
86
+ | 0.2978 | 18.0 | 18 | 0.4054 | 1.0 |
87
+ | 0.2978 | 19.0 | 19 | 0.3994 | 1.0 |
88
+ | 0.1751 | 20.0 | 20 | 0.3970 | 1.0 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.28.0
94
+ - Pytorch 2.0.1+cu118
95
+ - Datasets 2.14.4
96
+ - Tokenizers 0.13.3