update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: swin-tiny-patch4-window7-224-uploads-classifier-v2
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9725490196078431
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# swin-tiny-patch4-window7-224-uploads-classifier-v2
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0820
|
35 |
+
- Accuracy: 0.9725
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 128
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 20
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 1.2482 | 1.0 | 18 | 0.4781 | 0.8824 |
|
70 |
+
| 0.3036 | 2.0 | 36 | 0.0936 | 0.9804 |
|
71 |
+
| 0.1687 | 3.0 | 54 | 0.0745 | 0.9843 |
|
72 |
+
| 0.1392 | 4.0 | 72 | 0.0980 | 0.9725 |
|
73 |
+
| 0.14 | 5.0 | 90 | 0.0778 | 0.9765 |
|
74 |
+
| 0.1186 | 6.0 | 108 | 0.0837 | 0.9725 |
|
75 |
+
| 0.1088 | 7.0 | 126 | 0.0645 | 0.9804 |
|
76 |
+
| 0.0789 | 8.0 | 144 | 0.0675 | 0.9765 |
|
77 |
+
| 0.0644 | 9.0 | 162 | 0.0940 | 0.9686 |
|
78 |
+
| 0.0582 | 10.0 | 180 | 0.0879 | 0.9725 |
|
79 |
+
| 0.0591 | 11.0 | 198 | 0.0935 | 0.9686 |
|
80 |
+
| 0.0538 | 12.0 | 216 | 0.0540 | 0.9804 |
|
81 |
+
| 0.0588 | 13.0 | 234 | 0.0725 | 0.9686 |
|
82 |
+
| 0.0538 | 14.0 | 252 | 0.0637 | 0.9765 |
|
83 |
+
| 0.0462 | 15.0 | 270 | 0.0694 | 0.9725 |
|
84 |
+
| 0.0352 | 16.0 | 288 | 0.0771 | 0.9686 |
|
85 |
+
| 0.0536 | 17.0 | 306 | 0.0629 | 0.9804 |
|
86 |
+
| 0.0403 | 18.0 | 324 | 0.0933 | 0.9686 |
|
87 |
+
| 0.0412 | 19.0 | 342 | 0.0848 | 0.9725 |
|
88 |
+
| 0.0305 | 20.0 | 360 | 0.0820 | 0.9725 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.28.0
|
94 |
+
- Pytorch 2.0.1+cu118
|
95 |
+
- Datasets 2.14.5
|
96 |
+
- Tokenizers 0.13.3
|