dyang415 commited on
Commit
e82209e
1 Parent(s): 9a18d5d

Upload folder using huggingface_hub

Browse files
Files changed (50) hide show
  1. README.md +216 -0
  2. adapter_config.json +28 -0
  3. adapter_model.bin +3 -0
  4. adapter_model.safetensors +3 -0
  5. checkpoint-1065/README.md +216 -0
  6. checkpoint-1065/adapter_config.json +28 -0
  7. checkpoint-1065/adapter_model.safetensors +3 -0
  8. checkpoint-1065/optimizer.pt +3 -0
  9. checkpoint-1065/rng_state_0.pth +3 -0
  10. checkpoint-1065/rng_state_1.pth +3 -0
  11. checkpoint-1065/scheduler.pt +3 -0
  12. checkpoint-1065/trainer_state.json +0 -0
  13. checkpoint-1065/training_args.bin +3 -0
  14. checkpoint-1420/README.md +216 -0
  15. checkpoint-1420/adapter_config.json +28 -0
  16. checkpoint-1420/adapter_model.safetensors +3 -0
  17. checkpoint-1420/optimizer.pt +3 -0
  18. checkpoint-1420/rng_state_0.pth +3 -0
  19. checkpoint-1420/rng_state_1.pth +3 -0
  20. checkpoint-1420/scheduler.pt +3 -0
  21. checkpoint-1420/trainer_state.json +0 -0
  22. checkpoint-1420/training_args.bin +3 -0
  23. checkpoint-1775/README.md +216 -0
  24. checkpoint-1775/adapter_config.json +28 -0
  25. checkpoint-1775/adapter_model.safetensors +3 -0
  26. checkpoint-1775/optimizer.pt +3 -0
  27. checkpoint-1775/rng_state_0.pth +3 -0
  28. checkpoint-1775/rng_state_1.pth +3 -0
  29. checkpoint-1775/scheduler.pt +3 -0
  30. checkpoint-1775/trainer_state.json +0 -0
  31. checkpoint-1775/training_args.bin +3 -0
  32. checkpoint-710/README.md +216 -0
  33. checkpoint-710/adapter_config.json +28 -0
  34. checkpoint-710/adapter_model.safetensors +3 -0
  35. checkpoint-710/optimizer.pt +3 -0
  36. checkpoint-710/rng_state_0.pth +3 -0
  37. checkpoint-710/rng_state_1.pth +3 -0
  38. checkpoint-710/scheduler.pt +3 -0
  39. checkpoint-710/trainer_state.json +4313 -0
  40. checkpoint-710/training_args.bin +3 -0
  41. config.json +42 -0
  42. optimizer.pt +3 -0
  43. rng_state_0.pth +3 -0
  44. rng_state_1.pth +3 -0
  45. scheduler.pt +3 -0
  46. special_tokens_map.json +24 -0
  47. tokenizer.model +3 -0
  48. tokenizer_config.json +45 -0
  49. trainer_state.json +0 -0
  50. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ## Training procedure
201
+
202
+ The following `bitsandbytes` quantization config was used during training:
203
+ - quant_method: QuantizationMethod.BITS_AND_BYTES
204
+ - load_in_8bit: False
205
+ - load_in_4bit: True
206
+ - llm_int8_threshold: 6.0
207
+ - llm_int8_skip_modules: None
208
+ - llm_int8_enable_fp32_cpu_offload: False
209
+ - llm_int8_has_fp16_weight: False
210
+ - bnb_4bit_quant_type: nf4
211
+ - bnb_4bit_use_double_quant: True
212
+ - bnb_4bit_compute_dtype: bfloat16
213
+
214
+ ### Framework versions
215
+
216
+ - PEFT 0.7.0
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mixtral-8x7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "q_proj",
24
+ "o_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90065af8a683cb070236c1627c992088c760967715d6165bb778ac22aef8fe2c
3
+ size 62582080
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b91a6376ca0bd37751905ee06e3e089bd82a9f567e80d8a5461f7e35a51ec77b
3
+ size 109086416
checkpoint-1065/README.md ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ## Training procedure
201
+
202
+ The following `bitsandbytes` quantization config was used during training:
203
+ - quant_method: QuantizationMethod.BITS_AND_BYTES
204
+ - load_in_8bit: False
205
+ - load_in_4bit: True
206
+ - llm_int8_threshold: 6.0
207
+ - llm_int8_skip_modules: None
208
+ - llm_int8_enable_fp32_cpu_offload: False
209
+ - llm_int8_has_fp16_weight: False
210
+ - bnb_4bit_quant_type: nf4
211
+ - bnb_4bit_use_double_quant: True
212
+ - bnb_4bit_compute_dtype: bfloat16
213
+
214
+ ### Framework versions
215
+
216
+ - PEFT 0.7.0
checkpoint-1065/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mixtral-8x7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "q_proj",
24
+ "o_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-1065/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e015a8a5a9a5321cb117b76f0f2c16fe927829c509ce913d3c00502f48f38361
3
+ size 109086416
checkpoint-1065/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:318ea6e98628f2c84883f6dd4bd6dfcb9e0bce0fbe5b1a2418a49ea3935188cd
3
+ size 54936991
checkpoint-1065/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf98ad2b036635db56f150fcf20d81fe76cc5218cc580232993fbb719ef0685d
3
+ size 15607
checkpoint-1065/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c3293ff42460f873cbddc327189f0f45b996da2441ff4b6e8e03b1dac0f1e06
3
+ size 15607
checkpoint-1065/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22aaaf1dd255231772f969f94d0de12b2d041017250c16b80ff1b98a36ac807a
3
+ size 627
checkpoint-1065/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1065/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ee180f91ad8d20571236e775cec6a894a757483f3e26abb3aad13760bd2849b
3
+ size 4923
checkpoint-1420/README.md ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ## Training procedure
201
+
202
+ The following `bitsandbytes` quantization config was used during training:
203
+ - quant_method: QuantizationMethod.BITS_AND_BYTES
204
+ - load_in_8bit: False
205
+ - load_in_4bit: True
206
+ - llm_int8_threshold: 6.0
207
+ - llm_int8_skip_modules: None
208
+ - llm_int8_enable_fp32_cpu_offload: False
209
+ - llm_int8_has_fp16_weight: False
210
+ - bnb_4bit_quant_type: nf4
211
+ - bnb_4bit_use_double_quant: True
212
+ - bnb_4bit_compute_dtype: bfloat16
213
+
214
+ ### Framework versions
215
+
216
+ - PEFT 0.7.0
checkpoint-1420/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mixtral-8x7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "q_proj",
24
+ "o_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-1420/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee79b937be95736eafe8e1443e5856dd7d94eebde129539794ae542ed4406ef9
3
+ size 109086416
checkpoint-1420/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32c236451d2fc248193e804b881f61fdd5311af21afa1a45009e6e9f0fe11a75
3
+ size 54936991
checkpoint-1420/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc71739bae27a0cbde164de0c0d8058ab8295e64c7d117721cb5603ab3bae840
3
+ size 15607
checkpoint-1420/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65f04b8cb4204da1fe019f96f51558cd2f2c1b9a9b64a297a2a9fa337e7825c3
3
+ size 15607
checkpoint-1420/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5742f5dc670dff8e0b1825bbabf95a7d0df0e50b61b55f8a5e9ef34e50639484
3
+ size 627
checkpoint-1420/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1420/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ee180f91ad8d20571236e775cec6a894a757483f3e26abb3aad13760bd2849b
3
+ size 4923
checkpoint-1775/README.md ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ## Training procedure
201
+
202
+ The following `bitsandbytes` quantization config was used during training:
203
+ - quant_method: QuantizationMethod.BITS_AND_BYTES
204
+ - load_in_8bit: False
205
+ - load_in_4bit: True
206
+ - llm_int8_threshold: 6.0
207
+ - llm_int8_skip_modules: None
208
+ - llm_int8_enable_fp32_cpu_offload: False
209
+ - llm_int8_has_fp16_weight: False
210
+ - bnb_4bit_quant_type: nf4
211
+ - bnb_4bit_use_double_quant: True
212
+ - bnb_4bit_compute_dtype: bfloat16
213
+
214
+ ### Framework versions
215
+
216
+ - PEFT 0.7.0
checkpoint-1775/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mixtral-8x7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "q_proj",
24
+ "o_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-1775/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b91a6376ca0bd37751905ee06e3e089bd82a9f567e80d8a5461f7e35a51ec77b
3
+ size 109086416
checkpoint-1775/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56a874d2b35edb3cbae8b0c0a854c6047d72cdb81d3190815088ecb26af84723
3
+ size 54936991
checkpoint-1775/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13435f9b9643ab5c29ea598053e36e5512b01829f466a225f678d9f1f9c0f1fe
3
+ size 15607
checkpoint-1775/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2429c130756c1d683da7393342d610440e847f1a1b5d061a89caf054bc39159
3
+ size 15607
checkpoint-1775/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe17844350a7b4c686b4481b6d190258f17c79715a3871c9cdbdeadc2c5c10e0
3
+ size 627
checkpoint-1775/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1775/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ee180f91ad8d20571236e775cec6a894a757483f3e26abb3aad13760bd2849b
3
+ size 4923
checkpoint-710/README.md ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ## Training procedure
201
+
202
+ The following `bitsandbytes` quantization config was used during training:
203
+ - quant_method: QuantizationMethod.BITS_AND_BYTES
204
+ - load_in_8bit: False
205
+ - load_in_4bit: True
206
+ - llm_int8_threshold: 6.0
207
+ - llm_int8_skip_modules: None
208
+ - llm_int8_enable_fp32_cpu_offload: False
209
+ - llm_int8_has_fp16_weight: False
210
+ - bnb_4bit_quant_type: nf4
211
+ - bnb_4bit_use_double_quant: True
212
+ - bnb_4bit_compute_dtype: bfloat16
213
+
214
+ ### Framework versions
215
+
216
+ - PEFT 0.7.0
checkpoint-710/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mixtral-8x7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "q_proj",
24
+ "o_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-710/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9432ca48cc88bf086d9e64951a32d8ee5413605c760bd5790dd2fe326c003f26
3
+ size 109086416
checkpoint-710/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:802631ad304d9660ea9fead5c9cba25165bab25aa960f813a2acb83bb0208191
3
+ size 54936991
checkpoint-710/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4bd2302801ba2d0f2f8e36ab08efb148f207e3bee0de4d2c32d8d034593c9ab
3
+ size 15607
checkpoint-710/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5fc3e09d39f81608882eb49da30c62203e0ef5783fda67bf789826434040e94
3
+ size 15607
checkpoint-710/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4817135b4fec3da5f3d34571f25483c644dee827233321e917d05a61f0f0efa
3
+ size 627
checkpoint-710/trainer_state.json ADDED
@@ -0,0 +1,4313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.800225415610031,
5
+ "eval_steps": 178,
6
+ "global_step": 710,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2e-05,
14
+ "loss": 2.0913,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "eval_loss": 2.086364507675171,
20
+ "eval_runtime": 70.9467,
21
+ "eval_samples_per_second": 7.386,
22
+ "eval_steps_per_second": 1.846,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.0,
27
+ "learning_rate": 4e-05,
28
+ "loss": 1.8593,
29
+ "step": 2
30
+ },
31
+ {
32
+ "epoch": 0.0,
33
+ "learning_rate": 6e-05,
34
+ "loss": 1.9531,
35
+ "step": 3
36
+ },
37
+ {
38
+ "epoch": 0.0,
39
+ "learning_rate": 8e-05,
40
+ "loss": 1.497,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.01,
45
+ "learning_rate": 0.0001,
46
+ "loss": 1.371,
47
+ "step": 5
48
+ },
49
+ {
50
+ "epoch": 0.01,
51
+ "learning_rate": 0.00012,
52
+ "loss": 0.9074,
53
+ "step": 6
54
+ },
55
+ {
56
+ "epoch": 0.01,
57
+ "learning_rate": 0.00014,
58
+ "loss": 0.6526,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.01,
63
+ "learning_rate": 0.00016,
64
+ "loss": 0.5406,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.01,
69
+ "learning_rate": 0.00018,
70
+ "loss": 0.4498,
71
+ "step": 9
72
+ },
73
+ {
74
+ "epoch": 0.01,
75
+ "learning_rate": 0.0002,
76
+ "loss": 0.3852,
77
+ "step": 10
78
+ },
79
+ {
80
+ "epoch": 0.01,
81
+ "learning_rate": 0.00019999996057660117,
82
+ "loss": 0.3148,
83
+ "step": 11
84
+ },
85
+ {
86
+ "epoch": 0.01,
87
+ "learning_rate": 0.0001999998423064356,
88
+ "loss": 0.294,
89
+ "step": 12
90
+ },
91
+ {
92
+ "epoch": 0.01,
93
+ "learning_rate": 0.00019999964518959668,
94
+ "loss": 0.2364,
95
+ "step": 13
96
+ },
97
+ {
98
+ "epoch": 0.02,
99
+ "learning_rate": 0.00019999936922623977,
100
+ "loss": 0.263,
101
+ "step": 14
102
+ },
103
+ {
104
+ "epoch": 0.02,
105
+ "learning_rate": 0.0001999990144165825,
106
+ "loss": 0.2718,
107
+ "step": 15
108
+ },
109
+ {
110
+ "epoch": 0.02,
111
+ "learning_rate": 0.00019999858076090457,
112
+ "loss": 0.2188,
113
+ "step": 16
114
+ },
115
+ {
116
+ "epoch": 0.02,
117
+ "learning_rate": 0.00019999806825954792,
118
+ "loss": 0.1855,
119
+ "step": 17
120
+ },
121
+ {
122
+ "epoch": 0.02,
123
+ "learning_rate": 0.00019999747691291665,
124
+ "loss": 0.1666,
125
+ "step": 18
126
+ },
127
+ {
128
+ "epoch": 0.02,
129
+ "learning_rate": 0.000199996806721477,
130
+ "loss": 0.2055,
131
+ "step": 19
132
+ },
133
+ {
134
+ "epoch": 0.02,
135
+ "learning_rate": 0.00019999605768575743,
136
+ "loss": 0.2022,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.02,
141
+ "learning_rate": 0.0001999952298063485,
142
+ "loss": 0.1747,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.02,
147
+ "learning_rate": 0.000199994323083903,
148
+ "loss": 0.1447,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.03,
153
+ "learning_rate": 0.0001999933375191358,
154
+ "loss": 0.1613,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.03,
159
+ "learning_rate": 0.00019999227311282404,
160
+ "loss": 0.1555,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.03,
165
+ "learning_rate": 0.00019999112986580694,
166
+ "loss": 0.1488,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.03,
171
+ "learning_rate": 0.00019998990777898593,
172
+ "loss": 0.1672,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.03,
177
+ "learning_rate": 0.00019998860685332455,
178
+ "loss": 0.1647,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.03,
183
+ "learning_rate": 0.00019998722708984855,
184
+ "loss": 0.1565,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.03,
189
+ "learning_rate": 0.00019998576848964588,
190
+ "loss": 0.1471,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.03,
195
+ "learning_rate": 0.00019998423105386655,
196
+ "loss": 0.1508,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.03,
201
+ "learning_rate": 0.0001999826147837228,
202
+ "loss": 0.1482,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.04,
207
+ "learning_rate": 0.00019998091968048898,
208
+ "loss": 0.1314,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.04,
213
+ "learning_rate": 0.00019997914574550166,
214
+ "loss": 0.1445,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.04,
219
+ "learning_rate": 0.0001999772929801595,
220
+ "loss": 0.1411,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.04,
225
+ "learning_rate": 0.00019997536138592335,
226
+ "loss": 0.1338,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.04,
231
+ "learning_rate": 0.00019997335096431625,
232
+ "loss": 0.1447,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.04,
237
+ "learning_rate": 0.00019997126171692332,
238
+ "loss": 0.127,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.04,
243
+ "learning_rate": 0.00019996909364539185,
244
+ "loss": 0.1258,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.04,
249
+ "learning_rate": 0.0001999668467514313,
250
+ "loss": 0.1446,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.05,
255
+ "learning_rate": 0.00019996452103681334,
256
+ "loss": 0.1319,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.05,
261
+ "learning_rate": 0.00019996211650337163,
262
+ "loss": 0.1254,
263
+ "step": 41
264
+ },
265
+ {
266
+ "epoch": 0.05,
267
+ "learning_rate": 0.00019995963315300213,
268
+ "loss": 0.1415,
269
+ "step": 42
270
+ },
271
+ {
272
+ "epoch": 0.05,
273
+ "learning_rate": 0.0001999570709876628,
274
+ "loss": 0.1248,
275
+ "step": 43
276
+ },
277
+ {
278
+ "epoch": 0.05,
279
+ "learning_rate": 0.00019995443000937394,
280
+ "loss": 0.1091,
281
+ "step": 44
282
+ },
283
+ {
284
+ "epoch": 0.05,
285
+ "learning_rate": 0.00019995171022021784,
286
+ "loss": 0.1261,
287
+ "step": 45
288
+ },
289
+ {
290
+ "epoch": 0.05,
291
+ "learning_rate": 0.00019994891162233887,
292
+ "loss": 0.1454,
293
+ "step": 46
294
+ },
295
+ {
296
+ "epoch": 0.05,
297
+ "learning_rate": 0.00019994603421794377,
298
+ "loss": 0.1234,
299
+ "step": 47
300
+ },
301
+ {
302
+ "epoch": 0.05,
303
+ "learning_rate": 0.00019994307800930123,
304
+ "loss": 0.128,
305
+ "step": 48
306
+ },
307
+ {
308
+ "epoch": 0.06,
309
+ "learning_rate": 0.00019994004299874209,
310
+ "loss": 0.134,
311
+ "step": 49
312
+ },
313
+ {
314
+ "epoch": 0.06,
315
+ "learning_rate": 0.0001999369291886594,
316
+ "loss": 0.1134,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 0.06,
321
+ "learning_rate": 0.00019993373658150828,
322
+ "loss": 0.1282,
323
+ "step": 51
324
+ },
325
+ {
326
+ "epoch": 0.06,
327
+ "learning_rate": 0.00019993046517980602,
328
+ "loss": 0.1212,
329
+ "step": 52
330
+ },
331
+ {
332
+ "epoch": 0.06,
333
+ "learning_rate": 0.000199927114986132,
334
+ "loss": 0.1017,
335
+ "step": 53
336
+ },
337
+ {
338
+ "epoch": 0.06,
339
+ "learning_rate": 0.00019992368600312772,
340
+ "loss": 0.1125,
341
+ "step": 54
342
+ },
343
+ {
344
+ "epoch": 0.06,
345
+ "learning_rate": 0.00019992017823349686,
346
+ "loss": 0.0959,
347
+ "step": 55
348
+ },
349
+ {
350
+ "epoch": 0.06,
351
+ "learning_rate": 0.00019991659168000516,
352
+ "loss": 0.138,
353
+ "step": 56
354
+ },
355
+ {
356
+ "epoch": 0.06,
357
+ "learning_rate": 0.00019991292634548053,
358
+ "loss": 0.1299,
359
+ "step": 57
360
+ },
361
+ {
362
+ "epoch": 0.07,
363
+ "learning_rate": 0.00019990918223281295,
364
+ "loss": 0.1105,
365
+ "step": 58
366
+ },
367
+ {
368
+ "epoch": 0.07,
369
+ "learning_rate": 0.0001999053593449545,
370
+ "loss": 0.1405,
371
+ "step": 59
372
+ },
373
+ {
374
+ "epoch": 0.07,
375
+ "learning_rate": 0.00019990145768491947,
376
+ "loss": 0.1021,
377
+ "step": 60
378
+ },
379
+ {
380
+ "epoch": 0.07,
381
+ "learning_rate": 0.00019989747725578417,
382
+ "loss": 0.1204,
383
+ "step": 61
384
+ },
385
+ {
386
+ "epoch": 0.07,
387
+ "learning_rate": 0.000199893418060687,
388
+ "loss": 0.131,
389
+ "step": 62
390
+ },
391
+ {
392
+ "epoch": 0.07,
393
+ "learning_rate": 0.00019988928010282857,
394
+ "loss": 0.1047,
395
+ "step": 63
396
+ },
397
+ {
398
+ "epoch": 0.07,
399
+ "learning_rate": 0.00019988506338547147,
400
+ "loss": 0.1332,
401
+ "step": 64
402
+ },
403
+ {
404
+ "epoch": 0.07,
405
+ "learning_rate": 0.00019988076791194051,
406
+ "loss": 0.1341,
407
+ "step": 65
408
+ },
409
+ {
410
+ "epoch": 0.07,
411
+ "learning_rate": 0.00019987639368562244,
412
+ "loss": 0.1104,
413
+ "step": 66
414
+ },
415
+ {
416
+ "epoch": 0.08,
417
+ "learning_rate": 0.00019987194070996632,
418
+ "loss": 0.1162,
419
+ "step": 67
420
+ },
421
+ {
422
+ "epoch": 0.08,
423
+ "learning_rate": 0.00019986740898848306,
424
+ "loss": 0.1267,
425
+ "step": 68
426
+ },
427
+ {
428
+ "epoch": 0.08,
429
+ "learning_rate": 0.00019986279852474584,
430
+ "loss": 0.1259,
431
+ "step": 69
432
+ },
433
+ {
434
+ "epoch": 0.08,
435
+ "learning_rate": 0.00019985810932238987,
436
+ "loss": 0.1146,
437
+ "step": 70
438
+ },
439
+ {
440
+ "epoch": 0.08,
441
+ "learning_rate": 0.00019985334138511237,
442
+ "loss": 0.099,
443
+ "step": 71
444
+ },
445
+ {
446
+ "epoch": 0.08,
447
+ "learning_rate": 0.00019984849471667282,
448
+ "loss": 0.1424,
449
+ "step": 72
450
+ },
451
+ {
452
+ "epoch": 0.08,
453
+ "learning_rate": 0.00019984356932089257,
454
+ "loss": 0.115,
455
+ "step": 73
456
+ },
457
+ {
458
+ "epoch": 0.08,
459
+ "learning_rate": 0.00019983856520165512,
460
+ "loss": 0.1114,
461
+ "step": 74
462
+ },
463
+ {
464
+ "epoch": 0.08,
465
+ "learning_rate": 0.00019983348236290616,
466
+ "loss": 0.1192,
467
+ "step": 75
468
+ },
469
+ {
470
+ "epoch": 0.09,
471
+ "learning_rate": 0.00019982832080865328,
472
+ "loss": 0.1216,
473
+ "step": 76
474
+ },
475
+ {
476
+ "epoch": 0.09,
477
+ "learning_rate": 0.0001998230805429662,
478
+ "loss": 0.1095,
479
+ "step": 77
480
+ },
481
+ {
482
+ "epoch": 0.09,
483
+ "learning_rate": 0.00019981776156997668,
484
+ "loss": 0.0877,
485
+ "step": 78
486
+ },
487
+ {
488
+ "epoch": 0.09,
489
+ "learning_rate": 0.0001998123638938786,
490
+ "loss": 0.12,
491
+ "step": 79
492
+ },
493
+ {
494
+ "epoch": 0.09,
495
+ "learning_rate": 0.0001998068875189279,
496
+ "loss": 0.1013,
497
+ "step": 80
498
+ },
499
+ {
500
+ "epoch": 0.09,
501
+ "learning_rate": 0.00019980133244944243,
502
+ "loss": 0.1093,
503
+ "step": 81
504
+ },
505
+ {
506
+ "epoch": 0.09,
507
+ "learning_rate": 0.0001997956986898022,
508
+ "loss": 0.112,
509
+ "step": 82
510
+ },
511
+ {
512
+ "epoch": 0.09,
513
+ "learning_rate": 0.00019978998624444927,
514
+ "loss": 0.0877,
515
+ "step": 83
516
+ },
517
+ {
518
+ "epoch": 0.09,
519
+ "learning_rate": 0.00019978419511788777,
520
+ "loss": 0.1113,
521
+ "step": 84
522
+ },
523
+ {
524
+ "epoch": 0.1,
525
+ "learning_rate": 0.00019977832531468376,
526
+ "loss": 0.1091,
527
+ "step": 85
528
+ },
529
+ {
530
+ "epoch": 0.1,
531
+ "learning_rate": 0.00019977237683946536,
532
+ "loss": 0.1018,
533
+ "step": 86
534
+ },
535
+ {
536
+ "epoch": 0.1,
537
+ "learning_rate": 0.00019976634969692282,
538
+ "loss": 0.1021,
539
+ "step": 87
540
+ },
541
+ {
542
+ "epoch": 0.1,
543
+ "learning_rate": 0.00019976024389180833,
544
+ "loss": 0.1225,
545
+ "step": 88
546
+ },
547
+ {
548
+ "epoch": 0.1,
549
+ "learning_rate": 0.00019975405942893612,
550
+ "loss": 0.1249,
551
+ "step": 89
552
+ },
553
+ {
554
+ "epoch": 0.1,
555
+ "learning_rate": 0.00019974779631318242,
556
+ "loss": 0.1151,
557
+ "step": 90
558
+ },
559
+ {
560
+ "epoch": 0.1,
561
+ "learning_rate": 0.00019974145454948553,
562
+ "loss": 0.0959,
563
+ "step": 91
564
+ },
565
+ {
566
+ "epoch": 0.1,
567
+ "learning_rate": 0.0001997350341428457,
568
+ "loss": 0.1044,
569
+ "step": 92
570
+ },
571
+ {
572
+ "epoch": 0.1,
573
+ "learning_rate": 0.00019972853509832525,
574
+ "loss": 0.1159,
575
+ "step": 93
576
+ },
577
+ {
578
+ "epoch": 0.11,
579
+ "learning_rate": 0.00019972195742104846,
580
+ "loss": 0.1115,
581
+ "step": 94
582
+ },
583
+ {
584
+ "epoch": 0.11,
585
+ "learning_rate": 0.00019971530111620155,
586
+ "loss": 0.1073,
587
+ "step": 95
588
+ },
589
+ {
590
+ "epoch": 0.11,
591
+ "learning_rate": 0.00019970856618903285,
592
+ "loss": 0.1157,
593
+ "step": 96
594
+ },
595
+ {
596
+ "epoch": 0.11,
597
+ "learning_rate": 0.00019970175264485266,
598
+ "loss": 0.1047,
599
+ "step": 97
600
+ },
601
+ {
602
+ "epoch": 0.11,
603
+ "learning_rate": 0.00019969486048903323,
604
+ "loss": 0.1005,
605
+ "step": 98
606
+ },
607
+ {
608
+ "epoch": 0.11,
609
+ "learning_rate": 0.0001996878897270088,
610
+ "loss": 0.1104,
611
+ "step": 99
612
+ },
613
+ {
614
+ "epoch": 0.11,
615
+ "learning_rate": 0.0001996808403642756,
616
+ "loss": 0.1195,
617
+ "step": 100
618
+ },
619
+ {
620
+ "epoch": 0.11,
621
+ "learning_rate": 0.00019967371240639178,
622
+ "loss": 0.0993,
623
+ "step": 101
624
+ },
625
+ {
626
+ "epoch": 0.11,
627
+ "learning_rate": 0.00019966650585897755,
628
+ "loss": 0.1076,
629
+ "step": 102
630
+ },
631
+ {
632
+ "epoch": 0.12,
633
+ "learning_rate": 0.00019965922072771503,
634
+ "loss": 0.1244,
635
+ "step": 103
636
+ },
637
+ {
638
+ "epoch": 0.12,
639
+ "learning_rate": 0.0001996518570183483,
640
+ "loss": 0.1237,
641
+ "step": 104
642
+ },
643
+ {
644
+ "epoch": 0.12,
645
+ "learning_rate": 0.00019964441473668346,
646
+ "loss": 0.1069,
647
+ "step": 105
648
+ },
649
+ {
650
+ "epoch": 0.12,
651
+ "learning_rate": 0.00019963689388858847,
652
+ "loss": 0.1278,
653
+ "step": 106
654
+ },
655
+ {
656
+ "epoch": 0.12,
657
+ "learning_rate": 0.0001996292944799933,
658
+ "loss": 0.1058,
659
+ "step": 107
660
+ },
661
+ {
662
+ "epoch": 0.12,
663
+ "learning_rate": 0.0001996216165168898,
664
+ "loss": 0.1296,
665
+ "step": 108
666
+ },
667
+ {
668
+ "epoch": 0.12,
669
+ "learning_rate": 0.00019961386000533183,
670
+ "loss": 0.1021,
671
+ "step": 109
672
+ },
673
+ {
674
+ "epoch": 0.12,
675
+ "learning_rate": 0.00019960602495143514,
676
+ "loss": 0.1018,
677
+ "step": 110
678
+ },
679
+ {
680
+ "epoch": 0.13,
681
+ "learning_rate": 0.00019959811136137742,
682
+ "loss": 0.1041,
683
+ "step": 111
684
+ },
685
+ {
686
+ "epoch": 0.13,
687
+ "learning_rate": 0.00019959011924139828,
688
+ "loss": 0.098,
689
+ "step": 112
690
+ },
691
+ {
692
+ "epoch": 0.13,
693
+ "learning_rate": 0.00019958204859779925,
694
+ "loss": 0.1016,
695
+ "step": 113
696
+ },
697
+ {
698
+ "epoch": 0.13,
699
+ "learning_rate": 0.00019957389943694377,
700
+ "loss": 0.1036,
701
+ "step": 114
702
+ },
703
+ {
704
+ "epoch": 0.13,
705
+ "learning_rate": 0.00019956567176525724,
706
+ "loss": 0.1001,
707
+ "step": 115
708
+ },
709
+ {
710
+ "epoch": 0.13,
711
+ "learning_rate": 0.00019955736558922683,
712
+ "loss": 0.1144,
713
+ "step": 116
714
+ },
715
+ {
716
+ "epoch": 0.13,
717
+ "learning_rate": 0.0001995489809154018,
718
+ "loss": 0.1071,
719
+ "step": 117
720
+ },
721
+ {
722
+ "epoch": 0.13,
723
+ "learning_rate": 0.0001995405177503931,
724
+ "loss": 0.1013,
725
+ "step": 118
726
+ },
727
+ {
728
+ "epoch": 0.13,
729
+ "learning_rate": 0.0001995319761008737,
730
+ "loss": 0.101,
731
+ "step": 119
732
+ },
733
+ {
734
+ "epoch": 0.14,
735
+ "learning_rate": 0.00019952335597357842,
736
+ "loss": 0.1129,
737
+ "step": 120
738
+ },
739
+ {
740
+ "epoch": 0.14,
741
+ "learning_rate": 0.00019951465737530396,
742
+ "loss": 0.0942,
743
+ "step": 121
744
+ },
745
+ {
746
+ "epoch": 0.14,
747
+ "learning_rate": 0.00019950588031290888,
748
+ "loss": 0.1028,
749
+ "step": 122
750
+ },
751
+ {
752
+ "epoch": 0.14,
753
+ "learning_rate": 0.00019949702479331362,
754
+ "loss": 0.0941,
755
+ "step": 123
756
+ },
757
+ {
758
+ "epoch": 0.14,
759
+ "learning_rate": 0.0001994880908235005,
760
+ "loss": 0.1053,
761
+ "step": 124
762
+ },
763
+ {
764
+ "epoch": 0.14,
765
+ "learning_rate": 0.00019947907841051356,
766
+ "loss": 0.0921,
767
+ "step": 125
768
+ },
769
+ {
770
+ "epoch": 0.14,
771
+ "learning_rate": 0.0001994699875614589,
772
+ "loss": 0.0998,
773
+ "step": 126
774
+ },
775
+ {
776
+ "epoch": 0.14,
777
+ "learning_rate": 0.00019946081828350437,
778
+ "loss": 0.1009,
779
+ "step": 127
780
+ },
781
+ {
782
+ "epoch": 0.14,
783
+ "learning_rate": 0.00019945157058387958,
784
+ "loss": 0.1124,
785
+ "step": 128
786
+ },
787
+ {
788
+ "epoch": 0.15,
789
+ "learning_rate": 0.00019944224446987612,
790
+ "loss": 0.1214,
791
+ "step": 129
792
+ },
793
+ {
794
+ "epoch": 0.15,
795
+ "learning_rate": 0.00019943283994884728,
796
+ "loss": 0.1042,
797
+ "step": 130
798
+ },
799
+ {
800
+ "epoch": 0.15,
801
+ "learning_rate": 0.00019942335702820824,
802
+ "loss": 0.0921,
803
+ "step": 131
804
+ },
805
+ {
806
+ "epoch": 0.15,
807
+ "learning_rate": 0.00019941379571543596,
808
+ "loss": 0.1032,
809
+ "step": 132
810
+ },
811
+ {
812
+ "epoch": 0.15,
813
+ "learning_rate": 0.0001994041560180693,
814
+ "loss": 0.1243,
815
+ "step": 133
816
+ },
817
+ {
818
+ "epoch": 0.15,
819
+ "learning_rate": 0.00019939443794370876,
820
+ "loss": 0.0999,
821
+ "step": 134
822
+ },
823
+ {
824
+ "epoch": 0.15,
825
+ "learning_rate": 0.00019938464150001678,
826
+ "loss": 0.0953,
827
+ "step": 135
828
+ },
829
+ {
830
+ "epoch": 0.15,
831
+ "learning_rate": 0.00019937476669471753,
832
+ "loss": 0.1074,
833
+ "step": 136
834
+ },
835
+ {
836
+ "epoch": 0.15,
837
+ "learning_rate": 0.00019936481353559699,
838
+ "loss": 0.0931,
839
+ "step": 137
840
+ },
841
+ {
842
+ "epoch": 0.16,
843
+ "learning_rate": 0.00019935478203050288,
844
+ "loss": 0.1016,
845
+ "step": 138
846
+ },
847
+ {
848
+ "epoch": 0.16,
849
+ "learning_rate": 0.00019934467218734477,
850
+ "loss": 0.1032,
851
+ "step": 139
852
+ },
853
+ {
854
+ "epoch": 0.16,
855
+ "learning_rate": 0.00019933448401409393,
856
+ "loss": 0.1125,
857
+ "step": 140
858
+ },
859
+ {
860
+ "epoch": 0.16,
861
+ "learning_rate": 0.00019932421751878336,
862
+ "loss": 0.1009,
863
+ "step": 141
864
+ },
865
+ {
866
+ "epoch": 0.16,
867
+ "learning_rate": 0.0001993138727095079,
868
+ "loss": 0.0957,
869
+ "step": 142
870
+ },
871
+ {
872
+ "epoch": 0.16,
873
+ "learning_rate": 0.0001993034495944241,
874
+ "loss": 0.1153,
875
+ "step": 143
876
+ },
877
+ {
878
+ "epoch": 0.16,
879
+ "learning_rate": 0.00019929294818175027,
880
+ "loss": 0.1029,
881
+ "step": 144
882
+ },
883
+ {
884
+ "epoch": 0.16,
885
+ "learning_rate": 0.0001992823684797664,
886
+ "loss": 0.0956,
887
+ "step": 145
888
+ },
889
+ {
890
+ "epoch": 0.16,
891
+ "learning_rate": 0.00019927171049681427,
892
+ "loss": 0.1208,
893
+ "step": 146
894
+ },
895
+ {
896
+ "epoch": 0.17,
897
+ "learning_rate": 0.00019926097424129738,
898
+ "loss": 0.0972,
899
+ "step": 147
900
+ },
901
+ {
902
+ "epoch": 0.17,
903
+ "learning_rate": 0.0001992501597216809,
904
+ "loss": 0.0949,
905
+ "step": 148
906
+ },
907
+ {
908
+ "epoch": 0.17,
909
+ "learning_rate": 0.00019923926694649167,
910
+ "loss": 0.105,
911
+ "step": 149
912
+ },
913
+ {
914
+ "epoch": 0.17,
915
+ "learning_rate": 0.00019922829592431839,
916
+ "loss": 0.102,
917
+ "step": 150
918
+ },
919
+ {
920
+ "epoch": 0.17,
921
+ "learning_rate": 0.00019921724666381132,
922
+ "loss": 0.0956,
923
+ "step": 151
924
+ },
925
+ {
926
+ "epoch": 0.17,
927
+ "learning_rate": 0.00019920611917368248,
928
+ "loss": 0.092,
929
+ "step": 152
930
+ },
931
+ {
932
+ "epoch": 0.17,
933
+ "learning_rate": 0.0001991949134627055,
934
+ "loss": 0.1078,
935
+ "step": 153
936
+ },
937
+ {
938
+ "epoch": 0.17,
939
+ "learning_rate": 0.00019918362953971573,
940
+ "loss": 0.0964,
941
+ "step": 154
942
+ },
943
+ {
944
+ "epoch": 0.17,
945
+ "learning_rate": 0.00019917226741361015,
946
+ "loss": 0.1044,
947
+ "step": 155
948
+ },
949
+ {
950
+ "epoch": 0.18,
951
+ "learning_rate": 0.00019916082709334752,
952
+ "loss": 0.1089,
953
+ "step": 156
954
+ },
955
+ {
956
+ "epoch": 0.18,
957
+ "learning_rate": 0.00019914930858794808,
958
+ "loss": 0.0999,
959
+ "step": 157
960
+ },
961
+ {
962
+ "epoch": 0.18,
963
+ "learning_rate": 0.00019913771190649388,
964
+ "loss": 0.1075,
965
+ "step": 158
966
+ },
967
+ {
968
+ "epoch": 0.18,
969
+ "learning_rate": 0.00019912603705812847,
970
+ "loss": 0.1032,
971
+ "step": 159
972
+ },
973
+ {
974
+ "epoch": 0.18,
975
+ "learning_rate": 0.0001991142840520571,
976
+ "loss": 0.1141,
977
+ "step": 160
978
+ },
979
+ {
980
+ "epoch": 0.18,
981
+ "learning_rate": 0.0001991024528975467,
982
+ "loss": 0.103,
983
+ "step": 161
984
+ },
985
+ {
986
+ "epoch": 0.18,
987
+ "learning_rate": 0.00019909054360392567,
988
+ "loss": 0.1116,
989
+ "step": 162
990
+ },
991
+ {
992
+ "epoch": 0.18,
993
+ "learning_rate": 0.00019907855618058414,
994
+ "loss": 0.0906,
995
+ "step": 163
996
+ },
997
+ {
998
+ "epoch": 0.18,
999
+ "learning_rate": 0.00019906649063697386,
1000
+ "loss": 0.1002,
1001
+ "step": 164
1002
+ },
1003
+ {
1004
+ "epoch": 0.19,
1005
+ "learning_rate": 0.00019905434698260806,
1006
+ "loss": 0.1024,
1007
+ "step": 165
1008
+ },
1009
+ {
1010
+ "epoch": 0.19,
1011
+ "learning_rate": 0.00019904212522706165,
1012
+ "loss": 0.0892,
1013
+ "step": 166
1014
+ },
1015
+ {
1016
+ "epoch": 0.19,
1017
+ "learning_rate": 0.00019902982537997108,
1018
+ "loss": 0.1029,
1019
+ "step": 167
1020
+ },
1021
+ {
1022
+ "epoch": 0.19,
1023
+ "learning_rate": 0.00019901744745103438,
1024
+ "loss": 0.0924,
1025
+ "step": 168
1026
+ },
1027
+ {
1028
+ "epoch": 0.19,
1029
+ "learning_rate": 0.00019900499145001117,
1030
+ "loss": 0.0965,
1031
+ "step": 169
1032
+ },
1033
+ {
1034
+ "epoch": 0.19,
1035
+ "learning_rate": 0.00019899245738672262,
1036
+ "loss": 0.0785,
1037
+ "step": 170
1038
+ },
1039
+ {
1040
+ "epoch": 0.19,
1041
+ "learning_rate": 0.0001989798452710514,
1042
+ "loss": 0.0897,
1043
+ "step": 171
1044
+ },
1045
+ {
1046
+ "epoch": 0.19,
1047
+ "learning_rate": 0.00019896715511294176,
1048
+ "loss": 0.1162,
1049
+ "step": 172
1050
+ },
1051
+ {
1052
+ "epoch": 0.19,
1053
+ "learning_rate": 0.00019895438692239955,
1054
+ "loss": 0.1108,
1055
+ "step": 173
1056
+ },
1057
+ {
1058
+ "epoch": 0.2,
1059
+ "learning_rate": 0.000198941540709492,
1060
+ "loss": 0.1195,
1061
+ "step": 174
1062
+ },
1063
+ {
1064
+ "epoch": 0.2,
1065
+ "learning_rate": 0.00019892861648434796,
1066
+ "loss": 0.0956,
1067
+ "step": 175
1068
+ },
1069
+ {
1070
+ "epoch": 0.2,
1071
+ "learning_rate": 0.0001989156142571578,
1072
+ "loss": 0.0976,
1073
+ "step": 176
1074
+ },
1075
+ {
1076
+ "epoch": 0.2,
1077
+ "learning_rate": 0.00019890253403817334,
1078
+ "loss": 0.1009,
1079
+ "step": 177
1080
+ },
1081
+ {
1082
+ "epoch": 0.2,
1083
+ "learning_rate": 0.0001988893758377079,
1084
+ "loss": 0.0992,
1085
+ "step": 178
1086
+ },
1087
+ {
1088
+ "epoch": 0.2,
1089
+ "eval_loss": 0.10378821939229965,
1090
+ "eval_runtime": 71.6357,
1091
+ "eval_samples_per_second": 7.315,
1092
+ "eval_steps_per_second": 1.829,
1093
+ "step": 178
1094
+ },
1095
+ {
1096
+ "epoch": 0.2,
1097
+ "learning_rate": 0.0001988761396661363,
1098
+ "loss": 0.1052,
1099
+ "step": 179
1100
+ },
1101
+ {
1102
+ "epoch": 0.2,
1103
+ "learning_rate": 0.00019886282553389486,
1104
+ "loss": 0.096,
1105
+ "step": 180
1106
+ },
1107
+ {
1108
+ "epoch": 0.2,
1109
+ "learning_rate": 0.0001988494334514813,
1110
+ "loss": 0.1077,
1111
+ "step": 181
1112
+ },
1113
+ {
1114
+ "epoch": 0.21,
1115
+ "learning_rate": 0.0001988359634294549,
1116
+ "loss": 0.1049,
1117
+ "step": 182
1118
+ },
1119
+ {
1120
+ "epoch": 0.21,
1121
+ "learning_rate": 0.00019882241547843635,
1122
+ "loss": 0.115,
1123
+ "step": 183
1124
+ },
1125
+ {
1126
+ "epoch": 0.21,
1127
+ "learning_rate": 0.00019880878960910772,
1128
+ "loss": 0.0944,
1129
+ "step": 184
1130
+ },
1131
+ {
1132
+ "epoch": 0.21,
1133
+ "learning_rate": 0.0001987950858322126,
1134
+ "loss": 0.1106,
1135
+ "step": 185
1136
+ },
1137
+ {
1138
+ "epoch": 0.21,
1139
+ "learning_rate": 0.00019878130415855601,
1140
+ "loss": 0.1091,
1141
+ "step": 186
1142
+ },
1143
+ {
1144
+ "epoch": 0.21,
1145
+ "learning_rate": 0.0001987674445990043,
1146
+ "loss": 0.0884,
1147
+ "step": 187
1148
+ },
1149
+ {
1150
+ "epoch": 0.21,
1151
+ "learning_rate": 0.00019875350716448532,
1152
+ "loss": 0.0992,
1153
+ "step": 188
1154
+ },
1155
+ {
1156
+ "epoch": 0.21,
1157
+ "learning_rate": 0.00019873949186598828,
1158
+ "loss": 0.1075,
1159
+ "step": 189
1160
+ },
1161
+ {
1162
+ "epoch": 0.21,
1163
+ "learning_rate": 0.00019872539871456383,
1164
+ "loss": 0.1061,
1165
+ "step": 190
1166
+ },
1167
+ {
1168
+ "epoch": 0.22,
1169
+ "learning_rate": 0.00019871122772132388,
1170
+ "loss": 0.1174,
1171
+ "step": 191
1172
+ },
1173
+ {
1174
+ "epoch": 0.22,
1175
+ "learning_rate": 0.00019869697889744192,
1176
+ "loss": 0.1215,
1177
+ "step": 192
1178
+ },
1179
+ {
1180
+ "epoch": 0.22,
1181
+ "learning_rate": 0.00019868265225415265,
1182
+ "loss": 0.1092,
1183
+ "step": 193
1184
+ },
1185
+ {
1186
+ "epoch": 0.22,
1187
+ "learning_rate": 0.00019866824780275208,
1188
+ "loss": 0.1141,
1189
+ "step": 194
1190
+ },
1191
+ {
1192
+ "epoch": 0.22,
1193
+ "learning_rate": 0.0001986537655545978,
1194
+ "loss": 0.0987,
1195
+ "step": 195
1196
+ },
1197
+ {
1198
+ "epoch": 0.22,
1199
+ "learning_rate": 0.0001986392055211085,
1200
+ "loss": 0.1023,
1201
+ "step": 196
1202
+ },
1203
+ {
1204
+ "epoch": 0.22,
1205
+ "learning_rate": 0.00019862456771376437,
1206
+ "loss": 0.0952,
1207
+ "step": 197
1208
+ },
1209
+ {
1210
+ "epoch": 0.22,
1211
+ "learning_rate": 0.00019860985214410678,
1212
+ "loss": 0.1053,
1213
+ "step": 198
1214
+ },
1215
+ {
1216
+ "epoch": 0.22,
1217
+ "learning_rate": 0.00019859505882373853,
1218
+ "loss": 0.083,
1219
+ "step": 199
1220
+ },
1221
+ {
1222
+ "epoch": 0.23,
1223
+ "learning_rate": 0.00019858018776432366,
1224
+ "loss": 0.1012,
1225
+ "step": 200
1226
+ },
1227
+ {
1228
+ "epoch": 0.23,
1229
+ "learning_rate": 0.00019856523897758755,
1230
+ "loss": 0.1132,
1231
+ "step": 201
1232
+ },
1233
+ {
1234
+ "epoch": 0.23,
1235
+ "learning_rate": 0.00019855021247531683,
1236
+ "loss": 0.1091,
1237
+ "step": 202
1238
+ },
1239
+ {
1240
+ "epoch": 0.23,
1241
+ "learning_rate": 0.00019853510826935936,
1242
+ "loss": 0.1017,
1243
+ "step": 203
1244
+ },
1245
+ {
1246
+ "epoch": 0.23,
1247
+ "learning_rate": 0.00019851992637162443,
1248
+ "loss": 0.0791,
1249
+ "step": 204
1250
+ },
1251
+ {
1252
+ "epoch": 0.23,
1253
+ "learning_rate": 0.0001985046667940824,
1254
+ "loss": 0.0922,
1255
+ "step": 205
1256
+ },
1257
+ {
1258
+ "epoch": 0.23,
1259
+ "learning_rate": 0.00019848932954876498,
1260
+ "loss": 0.1002,
1261
+ "step": 206
1262
+ },
1263
+ {
1264
+ "epoch": 0.23,
1265
+ "learning_rate": 0.0001984739146477651,
1266
+ "loss": 0.1047,
1267
+ "step": 207
1268
+ },
1269
+ {
1270
+ "epoch": 0.23,
1271
+ "learning_rate": 0.0001984584221032369,
1272
+ "loss": 0.0827,
1273
+ "step": 208
1274
+ },
1275
+ {
1276
+ "epoch": 0.24,
1277
+ "learning_rate": 0.0001984428519273958,
1278
+ "loss": 0.109,
1279
+ "step": 209
1280
+ },
1281
+ {
1282
+ "epoch": 0.24,
1283
+ "learning_rate": 0.0001984272041325183,
1284
+ "loss": 0.1173,
1285
+ "step": 210
1286
+ },
1287
+ {
1288
+ "epoch": 0.24,
1289
+ "learning_rate": 0.0001984114787309423,
1290
+ "loss": 0.1018,
1291
+ "step": 211
1292
+ },
1293
+ {
1294
+ "epoch": 0.24,
1295
+ "learning_rate": 0.00019839567573506667,
1296
+ "loss": 0.1004,
1297
+ "step": 212
1298
+ },
1299
+ {
1300
+ "epoch": 0.24,
1301
+ "learning_rate": 0.00019837979515735166,
1302
+ "loss": 0.0815,
1303
+ "step": 213
1304
+ },
1305
+ {
1306
+ "epoch": 0.24,
1307
+ "learning_rate": 0.00019836383701031852,
1308
+ "loss": 0.1091,
1309
+ "step": 214
1310
+ },
1311
+ {
1312
+ "epoch": 0.24,
1313
+ "learning_rate": 0.00019834780130654976,
1314
+ "loss": 0.1019,
1315
+ "step": 215
1316
+ },
1317
+ {
1318
+ "epoch": 0.24,
1319
+ "learning_rate": 0.000198331688058689,
1320
+ "loss": 0.0967,
1321
+ "step": 216
1322
+ },
1323
+ {
1324
+ "epoch": 0.24,
1325
+ "learning_rate": 0.00019831549727944108,
1326
+ "loss": 0.0992,
1327
+ "step": 217
1328
+ },
1329
+ {
1330
+ "epoch": 0.25,
1331
+ "learning_rate": 0.00019829922898157188,
1332
+ "loss": 0.1007,
1333
+ "step": 218
1334
+ },
1335
+ {
1336
+ "epoch": 0.25,
1337
+ "learning_rate": 0.0001982828831779084,
1338
+ "loss": 0.1103,
1339
+ "step": 219
1340
+ },
1341
+ {
1342
+ "epoch": 0.25,
1343
+ "learning_rate": 0.00019826645988133882,
1344
+ "loss": 0.1117,
1345
+ "step": 220
1346
+ },
1347
+ {
1348
+ "epoch": 0.25,
1349
+ "learning_rate": 0.00019824995910481237,
1350
+ "loss": 0.1013,
1351
+ "step": 221
1352
+ },
1353
+ {
1354
+ "epoch": 0.25,
1355
+ "learning_rate": 0.0001982333808613394,
1356
+ "loss": 0.0922,
1357
+ "step": 222
1358
+ },
1359
+ {
1360
+ "epoch": 0.25,
1361
+ "learning_rate": 0.0001982167251639913,
1362
+ "loss": 0.0933,
1363
+ "step": 223
1364
+ },
1365
+ {
1366
+ "epoch": 0.25,
1367
+ "learning_rate": 0.00019819999202590058,
1368
+ "loss": 0.0991,
1369
+ "step": 224
1370
+ },
1371
+ {
1372
+ "epoch": 0.25,
1373
+ "learning_rate": 0.00019818318146026077,
1374
+ "loss": 0.1012,
1375
+ "step": 225
1376
+ },
1377
+ {
1378
+ "epoch": 0.25,
1379
+ "learning_rate": 0.00019816629348032644,
1380
+ "loss": 0.1109,
1381
+ "step": 226
1382
+ },
1383
+ {
1384
+ "epoch": 0.26,
1385
+ "learning_rate": 0.00019814932809941326,
1386
+ "loss": 0.0801,
1387
+ "step": 227
1388
+ },
1389
+ {
1390
+ "epoch": 0.26,
1391
+ "learning_rate": 0.00019813228533089786,
1392
+ "loss": 0.0932,
1393
+ "step": 228
1394
+ },
1395
+ {
1396
+ "epoch": 0.26,
1397
+ "learning_rate": 0.00019811516518821796,
1398
+ "loss": 0.0994,
1399
+ "step": 229
1400
+ },
1401
+ {
1402
+ "epoch": 0.26,
1403
+ "learning_rate": 0.00019809796768487217,
1404
+ "loss": 0.1059,
1405
+ "step": 230
1406
+ },
1407
+ {
1408
+ "epoch": 0.26,
1409
+ "learning_rate": 0.00019808069283442023,
1410
+ "loss": 0.0955,
1411
+ "step": 231
1412
+ },
1413
+ {
1414
+ "epoch": 0.26,
1415
+ "learning_rate": 0.00019806334065048282,
1416
+ "loss": 0.1049,
1417
+ "step": 232
1418
+ },
1419
+ {
1420
+ "epoch": 0.26,
1421
+ "learning_rate": 0.00019804591114674152,
1422
+ "loss": 0.1112,
1423
+ "step": 233
1424
+ },
1425
+ {
1426
+ "epoch": 0.26,
1427
+ "learning_rate": 0.00019802840433693895,
1428
+ "loss": 0.1001,
1429
+ "step": 234
1430
+ },
1431
+ {
1432
+ "epoch": 0.26,
1433
+ "learning_rate": 0.00019801082023487873,
1434
+ "loss": 0.1045,
1435
+ "step": 235
1436
+ },
1437
+ {
1438
+ "epoch": 0.27,
1439
+ "learning_rate": 0.00019799315885442531,
1440
+ "loss": 0.104,
1441
+ "step": 236
1442
+ },
1443
+ {
1444
+ "epoch": 0.27,
1445
+ "learning_rate": 0.00019797542020950413,
1446
+ "loss": 0.0907,
1447
+ "step": 237
1448
+ },
1449
+ {
1450
+ "epoch": 0.27,
1451
+ "learning_rate": 0.00019795760431410154,
1452
+ "loss": 0.1032,
1453
+ "step": 238
1454
+ },
1455
+ {
1456
+ "epoch": 0.27,
1457
+ "learning_rate": 0.00019793971118226483,
1458
+ "loss": 0.0952,
1459
+ "step": 239
1460
+ },
1461
+ {
1462
+ "epoch": 0.27,
1463
+ "learning_rate": 0.0001979217408281021,
1464
+ "loss": 0.1036,
1465
+ "step": 240
1466
+ },
1467
+ {
1468
+ "epoch": 0.27,
1469
+ "learning_rate": 0.00019790369326578243,
1470
+ "loss": 0.1087,
1471
+ "step": 241
1472
+ },
1473
+ {
1474
+ "epoch": 0.27,
1475
+ "learning_rate": 0.0001978855685095358,
1476
+ "loss": 0.091,
1477
+ "step": 242
1478
+ },
1479
+ {
1480
+ "epoch": 0.27,
1481
+ "learning_rate": 0.00019786736657365292,
1482
+ "loss": 0.0881,
1483
+ "step": 243
1484
+ },
1485
+ {
1486
+ "epoch": 0.28,
1487
+ "learning_rate": 0.00019784908747248547,
1488
+ "loss": 0.1187,
1489
+ "step": 244
1490
+ },
1491
+ {
1492
+ "epoch": 0.28,
1493
+ "learning_rate": 0.00019783073122044595,
1494
+ "loss": 0.1191,
1495
+ "step": 245
1496
+ },
1497
+ {
1498
+ "epoch": 0.28,
1499
+ "learning_rate": 0.00019781229783200766,
1500
+ "loss": 0.1029,
1501
+ "step": 246
1502
+ },
1503
+ {
1504
+ "epoch": 0.28,
1505
+ "learning_rate": 0.0001977937873217047,
1506
+ "loss": 0.1013,
1507
+ "step": 247
1508
+ },
1509
+ {
1510
+ "epoch": 0.28,
1511
+ "learning_rate": 0.0001977751997041321,
1512
+ "loss": 0.1031,
1513
+ "step": 248
1514
+ },
1515
+ {
1516
+ "epoch": 0.28,
1517
+ "learning_rate": 0.00019775653499394552,
1518
+ "loss": 0.0953,
1519
+ "step": 249
1520
+ },
1521
+ {
1522
+ "epoch": 0.28,
1523
+ "learning_rate": 0.00019773779320586153,
1524
+ "loss": 0.1028,
1525
+ "step": 250
1526
+ },
1527
+ {
1528
+ "epoch": 0.28,
1529
+ "learning_rate": 0.00019771897435465742,
1530
+ "loss": 0.1004,
1531
+ "step": 251
1532
+ },
1533
+ {
1534
+ "epoch": 0.28,
1535
+ "learning_rate": 0.00019770007845517124,
1536
+ "loss": 0.0998,
1537
+ "step": 252
1538
+ },
1539
+ {
1540
+ "epoch": 0.29,
1541
+ "learning_rate": 0.0001976811055223018,
1542
+ "loss": 0.1056,
1543
+ "step": 253
1544
+ },
1545
+ {
1546
+ "epoch": 0.29,
1547
+ "learning_rate": 0.00019766205557100868,
1548
+ "loss": 0.1111,
1549
+ "step": 254
1550
+ },
1551
+ {
1552
+ "epoch": 0.29,
1553
+ "learning_rate": 0.00019764292861631212,
1554
+ "loss": 0.0967,
1555
+ "step": 255
1556
+ },
1557
+ {
1558
+ "epoch": 0.29,
1559
+ "learning_rate": 0.00019762372467329315,
1560
+ "loss": 0.0989,
1561
+ "step": 256
1562
+ },
1563
+ {
1564
+ "epoch": 0.29,
1565
+ "learning_rate": 0.00019760444375709345,
1566
+ "loss": 0.1048,
1567
+ "step": 257
1568
+ },
1569
+ {
1570
+ "epoch": 0.29,
1571
+ "learning_rate": 0.00019758508588291535,
1572
+ "loss": 0.0932,
1573
+ "step": 258
1574
+ },
1575
+ {
1576
+ "epoch": 0.29,
1577
+ "learning_rate": 0.000197565651066022,
1578
+ "loss": 0.0996,
1579
+ "step": 259
1580
+ },
1581
+ {
1582
+ "epoch": 0.29,
1583
+ "learning_rate": 0.00019754613932173709,
1584
+ "loss": 0.0898,
1585
+ "step": 260
1586
+ },
1587
+ {
1588
+ "epoch": 0.29,
1589
+ "learning_rate": 0.000197526550665445,
1590
+ "loss": 0.1129,
1591
+ "step": 261
1592
+ },
1593
+ {
1594
+ "epoch": 0.3,
1595
+ "learning_rate": 0.0001975068851125908,
1596
+ "loss": 0.0919,
1597
+ "step": 262
1598
+ },
1599
+ {
1600
+ "epoch": 0.3,
1601
+ "learning_rate": 0.00019748714267868006,
1602
+ "loss": 0.0943,
1603
+ "step": 263
1604
+ },
1605
+ {
1606
+ "epoch": 0.3,
1607
+ "learning_rate": 0.00019746732337927916,
1608
+ "loss": 0.1023,
1609
+ "step": 264
1610
+ },
1611
+ {
1612
+ "epoch": 0.3,
1613
+ "learning_rate": 0.0001974474272300149,
1614
+ "loss": 0.1056,
1615
+ "step": 265
1616
+ },
1617
+ {
1618
+ "epoch": 0.3,
1619
+ "learning_rate": 0.00019742745424657478,
1620
+ "loss": 0.1017,
1621
+ "step": 266
1622
+ },
1623
+ {
1624
+ "epoch": 0.3,
1625
+ "learning_rate": 0.00019740740444470692,
1626
+ "loss": 0.0954,
1627
+ "step": 267
1628
+ },
1629
+ {
1630
+ "epoch": 0.3,
1631
+ "learning_rate": 0.00019738727784021984,
1632
+ "loss": 0.102,
1633
+ "step": 268
1634
+ },
1635
+ {
1636
+ "epoch": 0.3,
1637
+ "learning_rate": 0.00019736707444898284,
1638
+ "loss": 0.0854,
1639
+ "step": 269
1640
+ },
1641
+ {
1642
+ "epoch": 0.3,
1643
+ "learning_rate": 0.00019734679428692556,
1644
+ "loss": 0.0969,
1645
+ "step": 270
1646
+ },
1647
+ {
1648
+ "epoch": 0.31,
1649
+ "learning_rate": 0.00019732643737003827,
1650
+ "loss": 0.0991,
1651
+ "step": 271
1652
+ },
1653
+ {
1654
+ "epoch": 0.31,
1655
+ "learning_rate": 0.00019730600371437176,
1656
+ "loss": 0.1092,
1657
+ "step": 272
1658
+ },
1659
+ {
1660
+ "epoch": 0.31,
1661
+ "learning_rate": 0.0001972854933360373,
1662
+ "loss": 0.0971,
1663
+ "step": 273
1664
+ },
1665
+ {
1666
+ "epoch": 0.31,
1667
+ "learning_rate": 0.00019726490625120673,
1668
+ "loss": 0.0877,
1669
+ "step": 274
1670
+ },
1671
+ {
1672
+ "epoch": 0.31,
1673
+ "learning_rate": 0.00019724424247611225,
1674
+ "loss": 0.0904,
1675
+ "step": 275
1676
+ },
1677
+ {
1678
+ "epoch": 0.31,
1679
+ "learning_rate": 0.00019722350202704657,
1680
+ "loss": 0.1058,
1681
+ "step": 276
1682
+ },
1683
+ {
1684
+ "epoch": 0.31,
1685
+ "learning_rate": 0.00019720268492036288,
1686
+ "loss": 0.0898,
1687
+ "step": 277
1688
+ },
1689
+ {
1690
+ "epoch": 0.31,
1691
+ "learning_rate": 0.00019718179117247483,
1692
+ "loss": 0.1093,
1693
+ "step": 278
1694
+ },
1695
+ {
1696
+ "epoch": 0.31,
1697
+ "learning_rate": 0.00019716082079985648,
1698
+ "loss": 0.0985,
1699
+ "step": 279
1700
+ },
1701
+ {
1702
+ "epoch": 0.32,
1703
+ "learning_rate": 0.00019713977381904227,
1704
+ "loss": 0.0889,
1705
+ "step": 280
1706
+ },
1707
+ {
1708
+ "epoch": 0.32,
1709
+ "learning_rate": 0.00019711865024662706,
1710
+ "loss": 0.0889,
1711
+ "step": 281
1712
+ },
1713
+ {
1714
+ "epoch": 0.32,
1715
+ "learning_rate": 0.00019709745009926613,
1716
+ "loss": 0.0953,
1717
+ "step": 282
1718
+ },
1719
+ {
1720
+ "epoch": 0.32,
1721
+ "learning_rate": 0.0001970761733936751,
1722
+ "loss": 0.102,
1723
+ "step": 283
1724
+ },
1725
+ {
1726
+ "epoch": 0.32,
1727
+ "learning_rate": 0.00019705482014662997,
1728
+ "loss": 0.1006,
1729
+ "step": 284
1730
+ },
1731
+ {
1732
+ "epoch": 0.32,
1733
+ "learning_rate": 0.00019703339037496713,
1734
+ "loss": 0.0914,
1735
+ "step": 285
1736
+ },
1737
+ {
1738
+ "epoch": 0.32,
1739
+ "learning_rate": 0.00019701188409558326,
1740
+ "loss": 0.0996,
1741
+ "step": 286
1742
+ },
1743
+ {
1744
+ "epoch": 0.32,
1745
+ "learning_rate": 0.00019699030132543533,
1746
+ "loss": 0.1041,
1747
+ "step": 287
1748
+ },
1749
+ {
1750
+ "epoch": 0.32,
1751
+ "learning_rate": 0.0001969686420815407,
1752
+ "loss": 0.1136,
1753
+ "step": 288
1754
+ },
1755
+ {
1756
+ "epoch": 0.33,
1757
+ "learning_rate": 0.00019694690638097698,
1758
+ "loss": 0.0929,
1759
+ "step": 289
1760
+ },
1761
+ {
1762
+ "epoch": 0.33,
1763
+ "learning_rate": 0.00019692509424088203,
1764
+ "loss": 0.1037,
1765
+ "step": 290
1766
+ },
1767
+ {
1768
+ "epoch": 0.33,
1769
+ "learning_rate": 0.0001969032056784541,
1770
+ "loss": 0.1002,
1771
+ "step": 291
1772
+ },
1773
+ {
1774
+ "epoch": 0.33,
1775
+ "learning_rate": 0.0001968812407109516,
1776
+ "loss": 0.0955,
1777
+ "step": 292
1778
+ },
1779
+ {
1780
+ "epoch": 0.33,
1781
+ "learning_rate": 0.0001968591993556932,
1782
+ "loss": 0.0979,
1783
+ "step": 293
1784
+ },
1785
+ {
1786
+ "epoch": 0.33,
1787
+ "learning_rate": 0.00019683708163005777,
1788
+ "loss": 0.0935,
1789
+ "step": 294
1790
+ },
1791
+ {
1792
+ "epoch": 0.33,
1793
+ "learning_rate": 0.00019681488755148445,
1794
+ "loss": 0.0955,
1795
+ "step": 295
1796
+ },
1797
+ {
1798
+ "epoch": 0.33,
1799
+ "learning_rate": 0.00019679261713747255,
1800
+ "loss": 0.0885,
1801
+ "step": 296
1802
+ },
1803
+ {
1804
+ "epoch": 0.33,
1805
+ "learning_rate": 0.0001967702704055816,
1806
+ "loss": 0.0804,
1807
+ "step": 297
1808
+ },
1809
+ {
1810
+ "epoch": 0.34,
1811
+ "learning_rate": 0.00019674784737343132,
1812
+ "loss": 0.0994,
1813
+ "step": 298
1814
+ },
1815
+ {
1816
+ "epoch": 0.34,
1817
+ "learning_rate": 0.00019672534805870143,
1818
+ "loss": 0.084,
1819
+ "step": 299
1820
+ },
1821
+ {
1822
+ "epoch": 0.34,
1823
+ "learning_rate": 0.00019670277247913205,
1824
+ "loss": 0.1002,
1825
+ "step": 300
1826
+ },
1827
+ {
1828
+ "epoch": 0.34,
1829
+ "learning_rate": 0.00019668012065252323,
1830
+ "loss": 0.0861,
1831
+ "step": 301
1832
+ },
1833
+ {
1834
+ "epoch": 0.34,
1835
+ "learning_rate": 0.00019665739259673522,
1836
+ "loss": 0.0948,
1837
+ "step": 302
1838
+ },
1839
+ {
1840
+ "epoch": 0.34,
1841
+ "learning_rate": 0.00019663458832968838,
1842
+ "loss": 0.1003,
1843
+ "step": 303
1844
+ },
1845
+ {
1846
+ "epoch": 0.34,
1847
+ "learning_rate": 0.00019661170786936313,
1848
+ "loss": 0.0839,
1849
+ "step": 304
1850
+ },
1851
+ {
1852
+ "epoch": 0.34,
1853
+ "learning_rate": 0.00019658875123379998,
1854
+ "loss": 0.0916,
1855
+ "step": 305
1856
+ },
1857
+ {
1858
+ "epoch": 0.34,
1859
+ "learning_rate": 0.00019656571844109953,
1860
+ "loss": 0.096,
1861
+ "step": 306
1862
+ },
1863
+ {
1864
+ "epoch": 0.35,
1865
+ "learning_rate": 0.00019654260950942236,
1866
+ "loss": 0.0946,
1867
+ "step": 307
1868
+ },
1869
+ {
1870
+ "epoch": 0.35,
1871
+ "learning_rate": 0.00019651942445698915,
1872
+ "loss": 0.0902,
1873
+ "step": 308
1874
+ },
1875
+ {
1876
+ "epoch": 0.35,
1877
+ "learning_rate": 0.00019649616330208054,
1878
+ "loss": 0.1117,
1879
+ "step": 309
1880
+ },
1881
+ {
1882
+ "epoch": 0.35,
1883
+ "learning_rate": 0.00019647282606303723,
1884
+ "loss": 0.0988,
1885
+ "step": 310
1886
+ },
1887
+ {
1888
+ "epoch": 0.35,
1889
+ "learning_rate": 0.0001964494127582599,
1890
+ "loss": 0.0946,
1891
+ "step": 311
1892
+ },
1893
+ {
1894
+ "epoch": 0.35,
1895
+ "learning_rate": 0.00019642592340620915,
1896
+ "loss": 0.0852,
1897
+ "step": 312
1898
+ },
1899
+ {
1900
+ "epoch": 0.35,
1901
+ "learning_rate": 0.00019640235802540564,
1902
+ "loss": 0.0939,
1903
+ "step": 313
1904
+ },
1905
+ {
1906
+ "epoch": 0.35,
1907
+ "learning_rate": 0.00019637871663442984,
1908
+ "loss": 0.0962,
1909
+ "step": 314
1910
+ },
1911
+ {
1912
+ "epoch": 0.36,
1913
+ "learning_rate": 0.0001963549992519223,
1914
+ "loss": 0.0841,
1915
+ "step": 315
1916
+ },
1917
+ {
1918
+ "epoch": 0.36,
1919
+ "learning_rate": 0.0001963312058965834,
1920
+ "loss": 0.0987,
1921
+ "step": 316
1922
+ },
1923
+ {
1924
+ "epoch": 0.36,
1925
+ "learning_rate": 0.0001963073365871734,
1926
+ "loss": 0.1084,
1927
+ "step": 317
1928
+ },
1929
+ {
1930
+ "epoch": 0.36,
1931
+ "learning_rate": 0.00019628339134251252,
1932
+ "loss": 0.1001,
1933
+ "step": 318
1934
+ },
1935
+ {
1936
+ "epoch": 0.36,
1937
+ "learning_rate": 0.00019625937018148085,
1938
+ "loss": 0.0935,
1939
+ "step": 319
1940
+ },
1941
+ {
1942
+ "epoch": 0.36,
1943
+ "learning_rate": 0.00019623527312301824,
1944
+ "loss": 0.0965,
1945
+ "step": 320
1946
+ },
1947
+ {
1948
+ "epoch": 0.36,
1949
+ "learning_rate": 0.0001962111001861245,
1950
+ "loss": 0.0968,
1951
+ "step": 321
1952
+ },
1953
+ {
1954
+ "epoch": 0.36,
1955
+ "learning_rate": 0.00019618685138985913,
1956
+ "loss": 0.1054,
1957
+ "step": 322
1958
+ },
1959
+ {
1960
+ "epoch": 0.36,
1961
+ "learning_rate": 0.00019616252675334165,
1962
+ "loss": 0.0902,
1963
+ "step": 323
1964
+ },
1965
+ {
1966
+ "epoch": 0.37,
1967
+ "learning_rate": 0.0001961381262957512,
1968
+ "loss": 0.0956,
1969
+ "step": 324
1970
+ },
1971
+ {
1972
+ "epoch": 0.37,
1973
+ "learning_rate": 0.00019611365003632675,
1974
+ "loss": 0.1103,
1975
+ "step": 325
1976
+ },
1977
+ {
1978
+ "epoch": 0.37,
1979
+ "learning_rate": 0.00019608909799436706,
1980
+ "loss": 0.1136,
1981
+ "step": 326
1982
+ },
1983
+ {
1984
+ "epoch": 0.37,
1985
+ "learning_rate": 0.00019606447018923062,
1986
+ "loss": 0.1059,
1987
+ "step": 327
1988
+ },
1989
+ {
1990
+ "epoch": 0.37,
1991
+ "learning_rate": 0.00019603976664033567,
1992
+ "loss": 0.093,
1993
+ "step": 328
1994
+ },
1995
+ {
1996
+ "epoch": 0.37,
1997
+ "learning_rate": 0.00019601498736716017,
1998
+ "loss": 0.1275,
1999
+ "step": 329
2000
+ },
2001
+ {
2002
+ "epoch": 0.37,
2003
+ "learning_rate": 0.00019599013238924182,
2004
+ "loss": 0.095,
2005
+ "step": 330
2006
+ },
2007
+ {
2008
+ "epoch": 0.37,
2009
+ "learning_rate": 0.0001959652017261779,
2010
+ "loss": 0.0972,
2011
+ "step": 331
2012
+ },
2013
+ {
2014
+ "epoch": 0.37,
2015
+ "learning_rate": 0.00019594019539762546,
2016
+ "loss": 0.0954,
2017
+ "step": 332
2018
+ },
2019
+ {
2020
+ "epoch": 0.38,
2021
+ "learning_rate": 0.00019591511342330125,
2022
+ "loss": 0.0948,
2023
+ "step": 333
2024
+ },
2025
+ {
2026
+ "epoch": 0.38,
2027
+ "learning_rate": 0.00019588995582298153,
2028
+ "loss": 0.0992,
2029
+ "step": 334
2030
+ },
2031
+ {
2032
+ "epoch": 0.38,
2033
+ "learning_rate": 0.0001958647226165023,
2034
+ "loss": 0.0989,
2035
+ "step": 335
2036
+ },
2037
+ {
2038
+ "epoch": 0.38,
2039
+ "learning_rate": 0.00019583941382375915,
2040
+ "loss": 0.0943,
2041
+ "step": 336
2042
+ },
2043
+ {
2044
+ "epoch": 0.38,
2045
+ "learning_rate": 0.0001958140294647072,
2046
+ "loss": 0.0964,
2047
+ "step": 337
2048
+ },
2049
+ {
2050
+ "epoch": 0.38,
2051
+ "learning_rate": 0.00019578856955936123,
2052
+ "loss": 0.0943,
2053
+ "step": 338
2054
+ },
2055
+ {
2056
+ "epoch": 0.38,
2057
+ "learning_rate": 0.00019576303412779556,
2058
+ "loss": 0.1042,
2059
+ "step": 339
2060
+ },
2061
+ {
2062
+ "epoch": 0.38,
2063
+ "learning_rate": 0.0001957374231901441,
2064
+ "loss": 0.0912,
2065
+ "step": 340
2066
+ },
2067
+ {
2068
+ "epoch": 0.38,
2069
+ "learning_rate": 0.0001957117367666002,
2070
+ "loss": 0.1139,
2071
+ "step": 341
2072
+ },
2073
+ {
2074
+ "epoch": 0.39,
2075
+ "learning_rate": 0.00019568597487741677,
2076
+ "loss": 0.1012,
2077
+ "step": 342
2078
+ },
2079
+ {
2080
+ "epoch": 0.39,
2081
+ "learning_rate": 0.0001956601375429063,
2082
+ "loss": 0.0825,
2083
+ "step": 343
2084
+ },
2085
+ {
2086
+ "epoch": 0.39,
2087
+ "learning_rate": 0.00019563422478344067,
2088
+ "loss": 0.093,
2089
+ "step": 344
2090
+ },
2091
+ {
2092
+ "epoch": 0.39,
2093
+ "learning_rate": 0.00019560823661945125,
2094
+ "loss": 0.0831,
2095
+ "step": 345
2096
+ },
2097
+ {
2098
+ "epoch": 0.39,
2099
+ "learning_rate": 0.00019558217307142885,
2100
+ "loss": 0.0976,
2101
+ "step": 346
2102
+ },
2103
+ {
2104
+ "epoch": 0.39,
2105
+ "learning_rate": 0.0001955560341599238,
2106
+ "loss": 0.0986,
2107
+ "step": 347
2108
+ },
2109
+ {
2110
+ "epoch": 0.39,
2111
+ "learning_rate": 0.0001955298199055458,
2112
+ "loss": 0.1019,
2113
+ "step": 348
2114
+ },
2115
+ {
2116
+ "epoch": 0.39,
2117
+ "learning_rate": 0.00019550353032896388,
2118
+ "loss": 0.0949,
2119
+ "step": 349
2120
+ },
2121
+ {
2122
+ "epoch": 0.39,
2123
+ "learning_rate": 0.00019547716545090658,
2124
+ "loss": 0.1027,
2125
+ "step": 350
2126
+ },
2127
+ {
2128
+ "epoch": 0.4,
2129
+ "learning_rate": 0.00019545072529216176,
2130
+ "loss": 0.1066,
2131
+ "step": 351
2132
+ },
2133
+ {
2134
+ "epoch": 0.4,
2135
+ "learning_rate": 0.0001954242098735766,
2136
+ "loss": 0.0923,
2137
+ "step": 352
2138
+ },
2139
+ {
2140
+ "epoch": 0.4,
2141
+ "learning_rate": 0.00019539761921605773,
2142
+ "loss": 0.1062,
2143
+ "step": 353
2144
+ },
2145
+ {
2146
+ "epoch": 0.4,
2147
+ "learning_rate": 0.00019537095334057095,
2148
+ "loss": 0.0958,
2149
+ "step": 354
2150
+ },
2151
+ {
2152
+ "epoch": 0.4,
2153
+ "learning_rate": 0.00019534421226814153,
2154
+ "loss": 0.0855,
2155
+ "step": 355
2156
+ },
2157
+ {
2158
+ "epoch": 0.4,
2159
+ "learning_rate": 0.00019531739601985387,
2160
+ "loss": 0.0923,
2161
+ "step": 356
2162
+ },
2163
+ {
2164
+ "epoch": 0.4,
2165
+ "eval_loss": 0.09572399407625198,
2166
+ "eval_runtime": 71.9205,
2167
+ "eval_samples_per_second": 7.286,
2168
+ "eval_steps_per_second": 1.821,
2169
+ "step": 356
2170
+ },
2171
+ {
2172
+ "epoch": 0.4,
2173
+ "learning_rate": 0.00019529050461685179,
2174
+ "loss": 0.0843,
2175
+ "step": 357
2176
+ },
2177
+ {
2178
+ "epoch": 0.4,
2179
+ "learning_rate": 0.00019526353808033825,
2180
+ "loss": 0.1011,
2181
+ "step": 358
2182
+ },
2183
+ {
2184
+ "epoch": 0.4,
2185
+ "learning_rate": 0.00019523649643157556,
2186
+ "loss": 0.0999,
2187
+ "step": 359
2188
+ },
2189
+ {
2190
+ "epoch": 0.41,
2191
+ "learning_rate": 0.00019520937969188512,
2192
+ "loss": 0.1039,
2193
+ "step": 360
2194
+ },
2195
+ {
2196
+ "epoch": 0.41,
2197
+ "learning_rate": 0.00019518218788264763,
2198
+ "loss": 0.0872,
2199
+ "step": 361
2200
+ },
2201
+ {
2202
+ "epoch": 0.41,
2203
+ "learning_rate": 0.00019515492102530302,
2204
+ "loss": 0.0977,
2205
+ "step": 362
2206
+ },
2207
+ {
2208
+ "epoch": 0.41,
2209
+ "learning_rate": 0.00019512757914135026,
2210
+ "loss": 0.0954,
2211
+ "step": 363
2212
+ },
2213
+ {
2214
+ "epoch": 0.41,
2215
+ "learning_rate": 0.00019510016225234762,
2216
+ "loss": 0.0918,
2217
+ "step": 364
2218
+ },
2219
+ {
2220
+ "epoch": 0.41,
2221
+ "learning_rate": 0.00019507267037991238,
2222
+ "loss": 0.0958,
2223
+ "step": 365
2224
+ },
2225
+ {
2226
+ "epoch": 0.41,
2227
+ "learning_rate": 0.00019504510354572104,
2228
+ "loss": 0.1108,
2229
+ "step": 366
2230
+ },
2231
+ {
2232
+ "epoch": 0.41,
2233
+ "learning_rate": 0.00019501746177150913,
2234
+ "loss": 0.083,
2235
+ "step": 367
2236
+ },
2237
+ {
2238
+ "epoch": 0.41,
2239
+ "learning_rate": 0.0001949897450790713,
2240
+ "loss": 0.0842,
2241
+ "step": 368
2242
+ },
2243
+ {
2244
+ "epoch": 0.42,
2245
+ "learning_rate": 0.0001949619534902613,
2246
+ "loss": 0.0974,
2247
+ "step": 369
2248
+ },
2249
+ {
2250
+ "epoch": 0.42,
2251
+ "learning_rate": 0.00019493408702699194,
2252
+ "loss": 0.0944,
2253
+ "step": 370
2254
+ },
2255
+ {
2256
+ "epoch": 0.42,
2257
+ "learning_rate": 0.00019490614571123497,
2258
+ "loss": 0.0946,
2259
+ "step": 371
2260
+ },
2261
+ {
2262
+ "epoch": 0.42,
2263
+ "learning_rate": 0.00019487812956502128,
2264
+ "loss": 0.0913,
2265
+ "step": 372
2266
+ },
2267
+ {
2268
+ "epoch": 0.42,
2269
+ "learning_rate": 0.00019485003861044066,
2270
+ "loss": 0.0892,
2271
+ "step": 373
2272
+ },
2273
+ {
2274
+ "epoch": 0.42,
2275
+ "learning_rate": 0.0001948218728696419,
2276
+ "loss": 0.0919,
2277
+ "step": 374
2278
+ },
2279
+ {
2280
+ "epoch": 0.42,
2281
+ "learning_rate": 0.00019479363236483285,
2282
+ "loss": 0.1004,
2283
+ "step": 375
2284
+ },
2285
+ {
2286
+ "epoch": 0.42,
2287
+ "learning_rate": 0.00019476531711828027,
2288
+ "loss": 0.0967,
2289
+ "step": 376
2290
+ },
2291
+ {
2292
+ "epoch": 0.42,
2293
+ "learning_rate": 0.00019473692715230972,
2294
+ "loss": 0.1035,
2295
+ "step": 377
2296
+ },
2297
+ {
2298
+ "epoch": 0.43,
2299
+ "learning_rate": 0.00019470846248930587,
2300
+ "loss": 0.088,
2301
+ "step": 378
2302
+ },
2303
+ {
2304
+ "epoch": 0.43,
2305
+ "learning_rate": 0.00019467992315171215,
2306
+ "loss": 0.0987,
2307
+ "step": 379
2308
+ },
2309
+ {
2310
+ "epoch": 0.43,
2311
+ "learning_rate": 0.0001946513091620309,
2312
+ "loss": 0.0867,
2313
+ "step": 380
2314
+ },
2315
+ {
2316
+ "epoch": 0.43,
2317
+ "learning_rate": 0.00019462262054282338,
2318
+ "loss": 0.1074,
2319
+ "step": 381
2320
+ },
2321
+ {
2322
+ "epoch": 0.43,
2323
+ "learning_rate": 0.00019459385731670963,
2324
+ "loss": 0.0884,
2325
+ "step": 382
2326
+ },
2327
+ {
2328
+ "epoch": 0.43,
2329
+ "learning_rate": 0.00019456501950636853,
2330
+ "loss": 0.0904,
2331
+ "step": 383
2332
+ },
2333
+ {
2334
+ "epoch": 0.43,
2335
+ "learning_rate": 0.00019453610713453777,
2336
+ "loss": 0.0878,
2337
+ "step": 384
2338
+ },
2339
+ {
2340
+ "epoch": 0.43,
2341
+ "learning_rate": 0.0001945071202240138,
2342
+ "loss": 0.0928,
2343
+ "step": 385
2344
+ },
2345
+ {
2346
+ "epoch": 0.44,
2347
+ "learning_rate": 0.00019447805879765193,
2348
+ "loss": 0.0998,
2349
+ "step": 386
2350
+ },
2351
+ {
2352
+ "epoch": 0.44,
2353
+ "learning_rate": 0.00019444892287836613,
2354
+ "loss": 0.1027,
2355
+ "step": 387
2356
+ },
2357
+ {
2358
+ "epoch": 0.44,
2359
+ "learning_rate": 0.00019441971248912915,
2360
+ "loss": 0.0897,
2361
+ "step": 388
2362
+ },
2363
+ {
2364
+ "epoch": 0.44,
2365
+ "learning_rate": 0.00019439042765297243,
2366
+ "loss": 0.0899,
2367
+ "step": 389
2368
+ },
2369
+ {
2370
+ "epoch": 0.44,
2371
+ "learning_rate": 0.00019436106839298614,
2372
+ "loss": 0.0969,
2373
+ "step": 390
2374
+ },
2375
+ {
2376
+ "epoch": 0.44,
2377
+ "learning_rate": 0.0001943316347323191,
2378
+ "loss": 0.0952,
2379
+ "step": 391
2380
+ },
2381
+ {
2382
+ "epoch": 0.44,
2383
+ "learning_rate": 0.0001943021266941788,
2384
+ "loss": 0.091,
2385
+ "step": 392
2386
+ },
2387
+ {
2388
+ "epoch": 0.44,
2389
+ "learning_rate": 0.00019427254430183144,
2390
+ "loss": 0.1004,
2391
+ "step": 393
2392
+ },
2393
+ {
2394
+ "epoch": 0.44,
2395
+ "learning_rate": 0.00019424288757860175,
2396
+ "loss": 0.1029,
2397
+ "step": 394
2398
+ },
2399
+ {
2400
+ "epoch": 0.45,
2401
+ "learning_rate": 0.0001942131565478731,
2402
+ "loss": 0.0916,
2403
+ "step": 395
2404
+ },
2405
+ {
2406
+ "epoch": 0.45,
2407
+ "learning_rate": 0.00019418335123308746,
2408
+ "loss": 0.0913,
2409
+ "step": 396
2410
+ },
2411
+ {
2412
+ "epoch": 0.45,
2413
+ "learning_rate": 0.00019415347165774538,
2414
+ "loss": 0.1005,
2415
+ "step": 397
2416
+ },
2417
+ {
2418
+ "epoch": 0.45,
2419
+ "learning_rate": 0.0001941235178454059,
2420
+ "loss": 0.0922,
2421
+ "step": 398
2422
+ },
2423
+ {
2424
+ "epoch": 0.45,
2425
+ "learning_rate": 0.0001940934898196867,
2426
+ "loss": 0.0858,
2427
+ "step": 399
2428
+ },
2429
+ {
2430
+ "epoch": 0.45,
2431
+ "learning_rate": 0.00019406338760426394,
2432
+ "loss": 0.1029,
2433
+ "step": 400
2434
+ },
2435
+ {
2436
+ "epoch": 0.45,
2437
+ "learning_rate": 0.00019403321122287218,
2438
+ "loss": 0.0997,
2439
+ "step": 401
2440
+ },
2441
+ {
2442
+ "epoch": 0.45,
2443
+ "learning_rate": 0.00019400296069930456,
2444
+ "loss": 0.1042,
2445
+ "step": 402
2446
+ },
2447
+ {
2448
+ "epoch": 0.45,
2449
+ "learning_rate": 0.00019397263605741265,
2450
+ "loss": 0.0902,
2451
+ "step": 403
2452
+ },
2453
+ {
2454
+ "epoch": 0.46,
2455
+ "learning_rate": 0.00019394223732110649,
2456
+ "loss": 0.107,
2457
+ "step": 404
2458
+ },
2459
+ {
2460
+ "epoch": 0.46,
2461
+ "learning_rate": 0.00019391176451435445,
2462
+ "loss": 0.1093,
2463
+ "step": 405
2464
+ },
2465
+ {
2466
+ "epoch": 0.46,
2467
+ "learning_rate": 0.00019388121766118337,
2468
+ "loss": 0.113,
2469
+ "step": 406
2470
+ },
2471
+ {
2472
+ "epoch": 0.46,
2473
+ "learning_rate": 0.00019385059678567851,
2474
+ "loss": 0.0849,
2475
+ "step": 407
2476
+ },
2477
+ {
2478
+ "epoch": 0.46,
2479
+ "learning_rate": 0.00019381990191198343,
2480
+ "loss": 0.0701,
2481
+ "step": 408
2482
+ },
2483
+ {
2484
+ "epoch": 0.46,
2485
+ "learning_rate": 0.00019378913306430004,
2486
+ "loss": 0.0926,
2487
+ "step": 409
2488
+ },
2489
+ {
2490
+ "epoch": 0.46,
2491
+ "learning_rate": 0.00019375829026688863,
2492
+ "loss": 0.0866,
2493
+ "step": 410
2494
+ },
2495
+ {
2496
+ "epoch": 0.46,
2497
+ "learning_rate": 0.0001937273735440677,
2498
+ "loss": 0.0957,
2499
+ "step": 411
2500
+ },
2501
+ {
2502
+ "epoch": 0.46,
2503
+ "learning_rate": 0.00019369638292021413,
2504
+ "loss": 0.0965,
2505
+ "step": 412
2506
+ },
2507
+ {
2508
+ "epoch": 0.47,
2509
+ "learning_rate": 0.00019366531841976303,
2510
+ "loss": 0.1165,
2511
+ "step": 413
2512
+ },
2513
+ {
2514
+ "epoch": 0.47,
2515
+ "learning_rate": 0.0001936341800672078,
2516
+ "loss": 0.0888,
2517
+ "step": 414
2518
+ },
2519
+ {
2520
+ "epoch": 0.47,
2521
+ "learning_rate": 0.00019360296788709994,
2522
+ "loss": 0.1102,
2523
+ "step": 415
2524
+ },
2525
+ {
2526
+ "epoch": 0.47,
2527
+ "learning_rate": 0.00019357168190404936,
2528
+ "loss": 0.0878,
2529
+ "step": 416
2530
+ },
2531
+ {
2532
+ "epoch": 0.47,
2533
+ "learning_rate": 0.00019354032214272403,
2534
+ "loss": 0.105,
2535
+ "step": 417
2536
+ },
2537
+ {
2538
+ "epoch": 0.47,
2539
+ "learning_rate": 0.00019350888862785005,
2540
+ "loss": 0.1062,
2541
+ "step": 418
2542
+ },
2543
+ {
2544
+ "epoch": 0.47,
2545
+ "learning_rate": 0.00019347738138421181,
2546
+ "loss": 0.0928,
2547
+ "step": 419
2548
+ },
2549
+ {
2550
+ "epoch": 0.47,
2551
+ "learning_rate": 0.00019344580043665174,
2552
+ "loss": 0.0963,
2553
+ "step": 420
2554
+ },
2555
+ {
2556
+ "epoch": 0.47,
2557
+ "learning_rate": 0.00019341414581007039,
2558
+ "loss": 0.1015,
2559
+ "step": 421
2560
+ },
2561
+ {
2562
+ "epoch": 0.48,
2563
+ "learning_rate": 0.00019338241752942642,
2564
+ "loss": 0.0968,
2565
+ "step": 422
2566
+ },
2567
+ {
2568
+ "epoch": 0.48,
2569
+ "learning_rate": 0.00019335061561973662,
2570
+ "loss": 0.0896,
2571
+ "step": 423
2572
+ },
2573
+ {
2574
+ "epoch": 0.48,
2575
+ "learning_rate": 0.0001933187401060757,
2576
+ "loss": 0.0951,
2577
+ "step": 424
2578
+ },
2579
+ {
2580
+ "epoch": 0.48,
2581
+ "learning_rate": 0.00019328679101357653,
2582
+ "loss": 0.0748,
2583
+ "step": 425
2584
+ },
2585
+ {
2586
+ "epoch": 0.48,
2587
+ "learning_rate": 0.00019325476836742995,
2588
+ "loss": 0.0897,
2589
+ "step": 426
2590
+ },
2591
+ {
2592
+ "epoch": 0.48,
2593
+ "learning_rate": 0.00019322267219288474,
2594
+ "loss": 0.0914,
2595
+ "step": 427
2596
+ },
2597
+ {
2598
+ "epoch": 0.48,
2599
+ "learning_rate": 0.00019319050251524777,
2600
+ "loss": 0.0893,
2601
+ "step": 428
2602
+ },
2603
+ {
2604
+ "epoch": 0.48,
2605
+ "learning_rate": 0.00019315825935988377,
2606
+ "loss": 0.0919,
2607
+ "step": 429
2608
+ },
2609
+ {
2610
+ "epoch": 0.48,
2611
+ "learning_rate": 0.00019312594275221542,
2612
+ "loss": 0.0945,
2613
+ "step": 430
2614
+ },
2615
+ {
2616
+ "epoch": 0.49,
2617
+ "learning_rate": 0.00019309355271772335,
2618
+ "loss": 0.092,
2619
+ "step": 431
2620
+ },
2621
+ {
2622
+ "epoch": 0.49,
2623
+ "learning_rate": 0.00019306108928194608,
2624
+ "loss": 0.0792,
2625
+ "step": 432
2626
+ },
2627
+ {
2628
+ "epoch": 0.49,
2629
+ "learning_rate": 0.00019302855247047996,
2630
+ "loss": 0.1039,
2631
+ "step": 433
2632
+ },
2633
+ {
2634
+ "epoch": 0.49,
2635
+ "learning_rate": 0.00019299594230897925,
2636
+ "loss": 0.1154,
2637
+ "step": 434
2638
+ },
2639
+ {
2640
+ "epoch": 0.49,
2641
+ "learning_rate": 0.00019296325882315598,
2642
+ "loss": 0.0862,
2643
+ "step": 435
2644
+ },
2645
+ {
2646
+ "epoch": 0.49,
2647
+ "learning_rate": 0.00019293050203878005,
2648
+ "loss": 0.0926,
2649
+ "step": 436
2650
+ },
2651
+ {
2652
+ "epoch": 0.49,
2653
+ "learning_rate": 0.00019289767198167916,
2654
+ "loss": 0.0822,
2655
+ "step": 437
2656
+ },
2657
+ {
2658
+ "epoch": 0.49,
2659
+ "learning_rate": 0.00019286476867773873,
2660
+ "loss": 0.0746,
2661
+ "step": 438
2662
+ },
2663
+ {
2664
+ "epoch": 0.49,
2665
+ "learning_rate": 0.00019283179215290197,
2666
+ "loss": 0.0926,
2667
+ "step": 439
2668
+ },
2669
+ {
2670
+ "epoch": 0.5,
2671
+ "learning_rate": 0.0001927987424331698,
2672
+ "loss": 0.0903,
2673
+ "step": 440
2674
+ },
2675
+ {
2676
+ "epoch": 0.5,
2677
+ "learning_rate": 0.00019276561954460094,
2678
+ "loss": 0.0952,
2679
+ "step": 441
2680
+ },
2681
+ {
2682
+ "epoch": 0.5,
2683
+ "learning_rate": 0.00019273242351331162,
2684
+ "loss": 0.0921,
2685
+ "step": 442
2686
+ },
2687
+ {
2688
+ "epoch": 0.5,
2689
+ "learning_rate": 0.0001926991543654759,
2690
+ "loss": 0.0837,
2691
+ "step": 443
2692
+ },
2693
+ {
2694
+ "epoch": 0.5,
2695
+ "learning_rate": 0.00019266581212732544,
2696
+ "loss": 0.0904,
2697
+ "step": 444
2698
+ },
2699
+ {
2700
+ "epoch": 0.5,
2701
+ "learning_rate": 0.00019263239682514952,
2702
+ "loss": 0.1003,
2703
+ "step": 445
2704
+ },
2705
+ {
2706
+ "epoch": 0.5,
2707
+ "learning_rate": 0.000192598908485295,
2708
+ "loss": 0.0961,
2709
+ "step": 446
2710
+ },
2711
+ {
2712
+ "epoch": 0.5,
2713
+ "learning_rate": 0.00019256534713416645,
2714
+ "loss": 0.0862,
2715
+ "step": 447
2716
+ },
2717
+ {
2718
+ "epoch": 0.5,
2719
+ "learning_rate": 0.00019253171279822584,
2720
+ "loss": 0.1226,
2721
+ "step": 448
2722
+ },
2723
+ {
2724
+ "epoch": 0.51,
2725
+ "learning_rate": 0.0001924980055039928,
2726
+ "loss": 0.0949,
2727
+ "step": 449
2728
+ },
2729
+ {
2730
+ "epoch": 0.51,
2731
+ "learning_rate": 0.00019246422527804448,
2732
+ "loss": 0.0913,
2733
+ "step": 450
2734
+ },
2735
+ {
2736
+ "epoch": 0.51,
2737
+ "learning_rate": 0.00019243037214701546,
2738
+ "loss": 0.0921,
2739
+ "step": 451
2740
+ },
2741
+ {
2742
+ "epoch": 0.51,
2743
+ "learning_rate": 0.00019239644613759787,
2744
+ "loss": 0.0871,
2745
+ "step": 452
2746
+ },
2747
+ {
2748
+ "epoch": 0.51,
2749
+ "learning_rate": 0.00019236244727654126,
2750
+ "loss": 0.1031,
2751
+ "step": 453
2752
+ },
2753
+ {
2754
+ "epoch": 0.51,
2755
+ "learning_rate": 0.00019232837559065265,
2756
+ "loss": 0.0934,
2757
+ "step": 454
2758
+ },
2759
+ {
2760
+ "epoch": 0.51,
2761
+ "learning_rate": 0.0001922942311067965,
2762
+ "loss": 0.1027,
2763
+ "step": 455
2764
+ },
2765
+ {
2766
+ "epoch": 0.51,
2767
+ "learning_rate": 0.00019226001385189463,
2768
+ "loss": 0.0933,
2769
+ "step": 456
2770
+ },
2771
+ {
2772
+ "epoch": 0.52,
2773
+ "learning_rate": 0.00019222572385292624,
2774
+ "loss": 0.094,
2775
+ "step": 457
2776
+ },
2777
+ {
2778
+ "epoch": 0.52,
2779
+ "learning_rate": 0.00019219136113692787,
2780
+ "loss": 0.0847,
2781
+ "step": 458
2782
+ },
2783
+ {
2784
+ "epoch": 0.52,
2785
+ "learning_rate": 0.0001921569257309935,
2786
+ "loss": 0.0942,
2787
+ "step": 459
2788
+ },
2789
+ {
2790
+ "epoch": 0.52,
2791
+ "learning_rate": 0.0001921224176622743,
2792
+ "loss": 0.0842,
2793
+ "step": 460
2794
+ },
2795
+ {
2796
+ "epoch": 0.52,
2797
+ "learning_rate": 0.00019208783695797875,
2798
+ "loss": 0.0923,
2799
+ "step": 461
2800
+ },
2801
+ {
2802
+ "epoch": 0.52,
2803
+ "learning_rate": 0.00019205318364537267,
2804
+ "loss": 0.099,
2805
+ "step": 462
2806
+ },
2807
+ {
2808
+ "epoch": 0.52,
2809
+ "learning_rate": 0.00019201845775177904,
2810
+ "loss": 0.0879,
2811
+ "step": 463
2812
+ },
2813
+ {
2814
+ "epoch": 0.52,
2815
+ "learning_rate": 0.00019198365930457814,
2816
+ "loss": 0.0958,
2817
+ "step": 464
2818
+ },
2819
+ {
2820
+ "epoch": 0.52,
2821
+ "learning_rate": 0.0001919487883312075,
2822
+ "loss": 0.0812,
2823
+ "step": 465
2824
+ },
2825
+ {
2826
+ "epoch": 0.53,
2827
+ "learning_rate": 0.00019191384485916165,
2828
+ "loss": 0.0913,
2829
+ "step": 466
2830
+ },
2831
+ {
2832
+ "epoch": 0.53,
2833
+ "learning_rate": 0.00019187882891599247,
2834
+ "loss": 0.0952,
2835
+ "step": 467
2836
+ },
2837
+ {
2838
+ "epoch": 0.53,
2839
+ "learning_rate": 0.00019184374052930888,
2840
+ "loss": 0.0889,
2841
+ "step": 468
2842
+ },
2843
+ {
2844
+ "epoch": 0.53,
2845
+ "learning_rate": 0.00019180857972677696,
2846
+ "loss": 0.0874,
2847
+ "step": 469
2848
+ },
2849
+ {
2850
+ "epoch": 0.53,
2851
+ "learning_rate": 0.0001917733465361199,
2852
+ "loss": 0.0862,
2853
+ "step": 470
2854
+ },
2855
+ {
2856
+ "epoch": 0.53,
2857
+ "learning_rate": 0.0001917380409851179,
2858
+ "loss": 0.0861,
2859
+ "step": 471
2860
+ },
2861
+ {
2862
+ "epoch": 0.53,
2863
+ "learning_rate": 0.00019170266310160827,
2864
+ "loss": 0.0894,
2865
+ "step": 472
2866
+ },
2867
+ {
2868
+ "epoch": 0.53,
2869
+ "learning_rate": 0.00019166721291348537,
2870
+ "loss": 0.0813,
2871
+ "step": 473
2872
+ },
2873
+ {
2874
+ "epoch": 0.53,
2875
+ "learning_rate": 0.0001916316904487005,
2876
+ "loss": 0.1084,
2877
+ "step": 474
2878
+ },
2879
+ {
2880
+ "epoch": 0.54,
2881
+ "learning_rate": 0.000191596095735262,
2882
+ "loss": 0.0923,
2883
+ "step": 475
2884
+ },
2885
+ {
2886
+ "epoch": 0.54,
2887
+ "learning_rate": 0.00019156042880123512,
2888
+ "loss": 0.0995,
2889
+ "step": 476
2890
+ },
2891
+ {
2892
+ "epoch": 0.54,
2893
+ "learning_rate": 0.00019152468967474217,
2894
+ "loss": 0.0941,
2895
+ "step": 477
2896
+ },
2897
+ {
2898
+ "epoch": 0.54,
2899
+ "learning_rate": 0.00019148887838396227,
2900
+ "loss": 0.0929,
2901
+ "step": 478
2902
+ },
2903
+ {
2904
+ "epoch": 0.54,
2905
+ "learning_rate": 0.0001914529949571315,
2906
+ "loss": 0.0977,
2907
+ "step": 479
2908
+ },
2909
+ {
2910
+ "epoch": 0.54,
2911
+ "learning_rate": 0.00019141703942254275,
2912
+ "loss": 0.0933,
2913
+ "step": 480
2914
+ },
2915
+ {
2916
+ "epoch": 0.54,
2917
+ "learning_rate": 0.00019138101180854583,
2918
+ "loss": 0.0881,
2919
+ "step": 481
2920
+ },
2921
+ {
2922
+ "epoch": 0.54,
2923
+ "learning_rate": 0.00019134491214354736,
2924
+ "loss": 0.0926,
2925
+ "step": 482
2926
+ },
2927
+ {
2928
+ "epoch": 0.54,
2929
+ "learning_rate": 0.00019130874045601075,
2930
+ "loss": 0.1111,
2931
+ "step": 483
2932
+ },
2933
+ {
2934
+ "epoch": 0.55,
2935
+ "learning_rate": 0.00019127249677445627,
2936
+ "loss": 0.0886,
2937
+ "step": 484
2938
+ },
2939
+ {
2940
+ "epoch": 0.55,
2941
+ "learning_rate": 0.00019123618112746083,
2942
+ "loss": 0.0972,
2943
+ "step": 485
2944
+ },
2945
+ {
2946
+ "epoch": 0.55,
2947
+ "learning_rate": 0.00019119979354365822,
2948
+ "loss": 0.0881,
2949
+ "step": 486
2950
+ },
2951
+ {
2952
+ "epoch": 0.55,
2953
+ "learning_rate": 0.00019116333405173885,
2954
+ "loss": 0.0941,
2955
+ "step": 487
2956
+ },
2957
+ {
2958
+ "epoch": 0.55,
2959
+ "learning_rate": 0.00019112680268044987,
2960
+ "loss": 0.0987,
2961
+ "step": 488
2962
+ },
2963
+ {
2964
+ "epoch": 0.55,
2965
+ "learning_rate": 0.0001910901994585951,
2966
+ "loss": 0.0782,
2967
+ "step": 489
2968
+ },
2969
+ {
2970
+ "epoch": 0.55,
2971
+ "learning_rate": 0.000191053524415035,
2972
+ "loss": 0.0905,
2973
+ "step": 490
2974
+ },
2975
+ {
2976
+ "epoch": 0.55,
2977
+ "learning_rate": 0.00019101677757868668,
2978
+ "loss": 0.081,
2979
+ "step": 491
2980
+ },
2981
+ {
2982
+ "epoch": 0.55,
2983
+ "learning_rate": 0.00019097995897852382,
2984
+ "loss": 0.0884,
2985
+ "step": 492
2986
+ },
2987
+ {
2988
+ "epoch": 0.56,
2989
+ "learning_rate": 0.00019094306864357675,
2990
+ "loss": 0.077,
2991
+ "step": 493
2992
+ },
2993
+ {
2994
+ "epoch": 0.56,
2995
+ "learning_rate": 0.00019090610660293226,
2996
+ "loss": 0.0842,
2997
+ "step": 494
2998
+ },
2999
+ {
3000
+ "epoch": 0.56,
3001
+ "learning_rate": 0.00019086907288573378,
3002
+ "loss": 0.1004,
3003
+ "step": 495
3004
+ },
3005
+ {
3006
+ "epoch": 0.56,
3007
+ "learning_rate": 0.00019083196752118118,
3008
+ "loss": 0.1001,
3009
+ "step": 496
3010
+ },
3011
+ {
3012
+ "epoch": 0.56,
3013
+ "learning_rate": 0.00019079479053853087,
3014
+ "loss": 0.0879,
3015
+ "step": 497
3016
+ },
3017
+ {
3018
+ "epoch": 0.56,
3019
+ "learning_rate": 0.00019075754196709572,
3020
+ "loss": 0.0954,
3021
+ "step": 498
3022
+ },
3023
+ {
3024
+ "epoch": 0.56,
3025
+ "learning_rate": 0.00019072022183624503,
3026
+ "loss": 0.0971,
3027
+ "step": 499
3028
+ },
3029
+ {
3030
+ "epoch": 0.56,
3031
+ "learning_rate": 0.00019068283017540448,
3032
+ "loss": 0.1095,
3033
+ "step": 500
3034
+ },
3035
+ {
3036
+ "epoch": 0.56,
3037
+ "learning_rate": 0.00019064536701405627,
3038
+ "loss": 0.1002,
3039
+ "step": 501
3040
+ },
3041
+ {
3042
+ "epoch": 0.57,
3043
+ "learning_rate": 0.0001906078323817389,
3044
+ "loss": 0.0952,
3045
+ "step": 502
3046
+ },
3047
+ {
3048
+ "epoch": 0.57,
3049
+ "learning_rate": 0.00019057022630804716,
3050
+ "loss": 0.0966,
3051
+ "step": 503
3052
+ },
3053
+ {
3054
+ "epoch": 0.57,
3055
+ "learning_rate": 0.0001905325488226323,
3056
+ "loss": 0.0928,
3057
+ "step": 504
3058
+ },
3059
+ {
3060
+ "epoch": 0.57,
3061
+ "learning_rate": 0.00019049479995520175,
3062
+ "loss": 0.0933,
3063
+ "step": 505
3064
+ },
3065
+ {
3066
+ "epoch": 0.57,
3067
+ "learning_rate": 0.00019045697973551934,
3068
+ "loss": 0.0962,
3069
+ "step": 506
3070
+ },
3071
+ {
3072
+ "epoch": 0.57,
3073
+ "learning_rate": 0.00019041908819340505,
3074
+ "loss": 0.0968,
3075
+ "step": 507
3076
+ },
3077
+ {
3078
+ "epoch": 0.57,
3079
+ "learning_rate": 0.0001903811253587352,
3080
+ "loss": 0.0977,
3081
+ "step": 508
3082
+ },
3083
+ {
3084
+ "epoch": 0.57,
3085
+ "learning_rate": 0.00019034309126144224,
3086
+ "loss": 0.092,
3087
+ "step": 509
3088
+ },
3089
+ {
3090
+ "epoch": 0.57,
3091
+ "learning_rate": 0.00019030498593151484,
3092
+ "loss": 0.0897,
3093
+ "step": 510
3094
+ },
3095
+ {
3096
+ "epoch": 0.58,
3097
+ "learning_rate": 0.00019026680939899783,
3098
+ "loss": 0.0884,
3099
+ "step": 511
3100
+ },
3101
+ {
3102
+ "epoch": 0.58,
3103
+ "learning_rate": 0.0001902285616939922,
3104
+ "loss": 0.0961,
3105
+ "step": 512
3106
+ },
3107
+ {
3108
+ "epoch": 0.58,
3109
+ "learning_rate": 0.00019019024284665505,
3110
+ "loss": 0.0882,
3111
+ "step": 513
3112
+ },
3113
+ {
3114
+ "epoch": 0.58,
3115
+ "learning_rate": 0.0001901518528871995,
3116
+ "loss": 0.0835,
3117
+ "step": 514
3118
+ },
3119
+ {
3120
+ "epoch": 0.58,
3121
+ "learning_rate": 0.00019011339184589487,
3122
+ "loss": 0.0861,
3123
+ "step": 515
3124
+ },
3125
+ {
3126
+ "epoch": 0.58,
3127
+ "learning_rate": 0.00019007485975306644,
3128
+ "loss": 0.0824,
3129
+ "step": 516
3130
+ },
3131
+ {
3132
+ "epoch": 0.58,
3133
+ "learning_rate": 0.00019003625663909554,
3134
+ "loss": 0.0913,
3135
+ "step": 517
3136
+ },
3137
+ {
3138
+ "epoch": 0.58,
3139
+ "learning_rate": 0.00018999758253441946,
3140
+ "loss": 0.1271,
3141
+ "step": 518
3142
+ },
3143
+ {
3144
+ "epoch": 0.58,
3145
+ "learning_rate": 0.00018995883746953152,
3146
+ "loss": 0.0795,
3147
+ "step": 519
3148
+ },
3149
+ {
3150
+ "epoch": 0.59,
3151
+ "learning_rate": 0.00018992002147498094,
3152
+ "loss": 0.0943,
3153
+ "step": 520
3154
+ },
3155
+ {
3156
+ "epoch": 0.59,
3157
+ "learning_rate": 0.0001898811345813729,
3158
+ "loss": 0.0863,
3159
+ "step": 521
3160
+ },
3161
+ {
3162
+ "epoch": 0.59,
3163
+ "learning_rate": 0.00018984217681936846,
3164
+ "loss": 0.0936,
3165
+ "step": 522
3166
+ },
3167
+ {
3168
+ "epoch": 0.59,
3169
+ "learning_rate": 0.00018980314821968463,
3170
+ "loss": 0.0872,
3171
+ "step": 523
3172
+ },
3173
+ {
3174
+ "epoch": 0.59,
3175
+ "learning_rate": 0.00018976404881309412,
3176
+ "loss": 0.0924,
3177
+ "step": 524
3178
+ },
3179
+ {
3180
+ "epoch": 0.59,
3181
+ "learning_rate": 0.00018972487863042563,
3182
+ "loss": 0.0838,
3183
+ "step": 525
3184
+ },
3185
+ {
3186
+ "epoch": 0.59,
3187
+ "learning_rate": 0.00018968563770256354,
3188
+ "loss": 0.0872,
3189
+ "step": 526
3190
+ },
3191
+ {
3192
+ "epoch": 0.59,
3193
+ "learning_rate": 0.0001896463260604481,
3194
+ "loss": 0.0979,
3195
+ "step": 527
3196
+ },
3197
+ {
3198
+ "epoch": 0.6,
3199
+ "learning_rate": 0.00018960694373507526,
3200
+ "loss": 0.088,
3201
+ "step": 528
3202
+ },
3203
+ {
3204
+ "epoch": 0.6,
3205
+ "learning_rate": 0.00018956749075749673,
3206
+ "loss": 0.0865,
3207
+ "step": 529
3208
+ },
3209
+ {
3210
+ "epoch": 0.6,
3211
+ "learning_rate": 0.00018952796715881995,
3212
+ "loss": 0.0936,
3213
+ "step": 530
3214
+ },
3215
+ {
3216
+ "epoch": 0.6,
3217
+ "learning_rate": 0.000189488372970208,
3218
+ "loss": 0.0842,
3219
+ "step": 531
3220
+ },
3221
+ {
3222
+ "epoch": 0.6,
3223
+ "learning_rate": 0.00018944870822287956,
3224
+ "loss": 0.1191,
3225
+ "step": 532
3226
+ },
3227
+ {
3228
+ "epoch": 0.6,
3229
+ "learning_rate": 0.0001894089729481091,
3230
+ "loss": 0.0981,
3231
+ "step": 533
3232
+ },
3233
+ {
3234
+ "epoch": 0.6,
3235
+ "learning_rate": 0.0001893691671772266,
3236
+ "loss": 0.0847,
3237
+ "step": 534
3238
+ },
3239
+ {
3240
+ "epoch": 0.6,
3241
+ "eval_loss": 0.09380102157592773,
3242
+ "eval_runtime": 71.8003,
3243
+ "eval_samples_per_second": 7.298,
3244
+ "eval_steps_per_second": 1.825,
3245
+ "step": 534
3246
+ },
3247
+ {
3248
+ "epoch": 0.6,
3249
+ "learning_rate": 0.00018932929094161758,
3250
+ "loss": 0.0837,
3251
+ "step": 535
3252
+ },
3253
+ {
3254
+ "epoch": 0.6,
3255
+ "learning_rate": 0.00018928934427272321,
3256
+ "loss": 0.0954,
3257
+ "step": 536
3258
+ },
3259
+ {
3260
+ "epoch": 0.61,
3261
+ "learning_rate": 0.00018924932720204018,
3262
+ "loss": 0.0755,
3263
+ "step": 537
3264
+ },
3265
+ {
3266
+ "epoch": 0.61,
3267
+ "learning_rate": 0.00018920923976112065,
3268
+ "loss": 0.0949,
3269
+ "step": 538
3270
+ },
3271
+ {
3272
+ "epoch": 0.61,
3273
+ "learning_rate": 0.0001891690819815723,
3274
+ "loss": 0.0949,
3275
+ "step": 539
3276
+ },
3277
+ {
3278
+ "epoch": 0.61,
3279
+ "learning_rate": 0.0001891288538950582,
3280
+ "loss": 0.0849,
3281
+ "step": 540
3282
+ },
3283
+ {
3284
+ "epoch": 0.61,
3285
+ "learning_rate": 0.00018908855553329695,
3286
+ "loss": 0.0971,
3287
+ "step": 541
3288
+ },
3289
+ {
3290
+ "epoch": 0.61,
3291
+ "learning_rate": 0.00018904818692806253,
3292
+ "loss": 0.0847,
3293
+ "step": 542
3294
+ },
3295
+ {
3296
+ "epoch": 0.61,
3297
+ "learning_rate": 0.00018900774811118424,
3298
+ "loss": 0.0864,
3299
+ "step": 543
3300
+ },
3301
+ {
3302
+ "epoch": 0.61,
3303
+ "learning_rate": 0.00018896723911454686,
3304
+ "loss": 0.0839,
3305
+ "step": 544
3306
+ },
3307
+ {
3308
+ "epoch": 0.61,
3309
+ "learning_rate": 0.0001889266599700904,
3310
+ "loss": 0.0981,
3311
+ "step": 545
3312
+ },
3313
+ {
3314
+ "epoch": 0.62,
3315
+ "learning_rate": 0.0001888860107098102,
3316
+ "loss": 0.0922,
3317
+ "step": 546
3318
+ },
3319
+ {
3320
+ "epoch": 0.62,
3321
+ "learning_rate": 0.00018884529136575692,
3322
+ "loss": 0.0957,
3323
+ "step": 547
3324
+ },
3325
+ {
3326
+ "epoch": 0.62,
3327
+ "learning_rate": 0.00018880450197003646,
3328
+ "loss": 0.0953,
3329
+ "step": 548
3330
+ },
3331
+ {
3332
+ "epoch": 0.62,
3333
+ "learning_rate": 0.00018876364255480997,
3334
+ "loss": 0.0927,
3335
+ "step": 549
3336
+ },
3337
+ {
3338
+ "epoch": 0.62,
3339
+ "learning_rate": 0.00018872271315229373,
3340
+ "loss": 0.0761,
3341
+ "step": 550
3342
+ },
3343
+ {
3344
+ "epoch": 0.62,
3345
+ "learning_rate": 0.00018868171379475933,
3346
+ "loss": 0.0912,
3347
+ "step": 551
3348
+ },
3349
+ {
3350
+ "epoch": 0.62,
3351
+ "learning_rate": 0.00018864064451453341,
3352
+ "loss": 0.1042,
3353
+ "step": 552
3354
+ },
3355
+ {
3356
+ "epoch": 0.62,
3357
+ "learning_rate": 0.0001885995053439978,
3358
+ "loss": 0.0942,
3359
+ "step": 553
3360
+ },
3361
+ {
3362
+ "epoch": 0.62,
3363
+ "learning_rate": 0.00018855829631558946,
3364
+ "loss": 0.0873,
3365
+ "step": 554
3366
+ },
3367
+ {
3368
+ "epoch": 0.63,
3369
+ "learning_rate": 0.00018851701746180031,
3370
+ "loss": 0.0939,
3371
+ "step": 555
3372
+ },
3373
+ {
3374
+ "epoch": 0.63,
3375
+ "learning_rate": 0.0001884756688151774,
3376
+ "loss": 0.0848,
3377
+ "step": 556
3378
+ },
3379
+ {
3380
+ "epoch": 0.63,
3381
+ "learning_rate": 0.00018843425040832292,
3382
+ "loss": 0.0916,
3383
+ "step": 557
3384
+ },
3385
+ {
3386
+ "epoch": 0.63,
3387
+ "learning_rate": 0.00018839276227389386,
3388
+ "loss": 0.1135,
3389
+ "step": 558
3390
+ },
3391
+ {
3392
+ "epoch": 0.63,
3393
+ "learning_rate": 0.0001883512044446023,
3394
+ "loss": 0.0883,
3395
+ "step": 559
3396
+ },
3397
+ {
3398
+ "epoch": 0.63,
3399
+ "learning_rate": 0.00018830957695321527,
3400
+ "loss": 0.1102,
3401
+ "step": 560
3402
+ },
3403
+ {
3404
+ "epoch": 0.63,
3405
+ "learning_rate": 0.00018826787983255473,
3406
+ "loss": 0.0954,
3407
+ "step": 561
3408
+ },
3409
+ {
3410
+ "epoch": 0.63,
3411
+ "learning_rate": 0.00018822611311549754,
3412
+ "loss": 0.0943,
3413
+ "step": 562
3414
+ },
3415
+ {
3416
+ "epoch": 0.63,
3417
+ "learning_rate": 0.00018818427683497534,
3418
+ "loss": 0.0694,
3419
+ "step": 563
3420
+ },
3421
+ {
3422
+ "epoch": 0.64,
3423
+ "learning_rate": 0.00018814237102397478,
3424
+ "loss": 0.0818,
3425
+ "step": 564
3426
+ },
3427
+ {
3428
+ "epoch": 0.64,
3429
+ "learning_rate": 0.0001881003957155372,
3430
+ "loss": 0.0934,
3431
+ "step": 565
3432
+ },
3433
+ {
3434
+ "epoch": 0.64,
3435
+ "learning_rate": 0.00018805835094275883,
3436
+ "loss": 0.0902,
3437
+ "step": 566
3438
+ },
3439
+ {
3440
+ "epoch": 0.64,
3441
+ "learning_rate": 0.0001880162367387906,
3442
+ "loss": 0.0841,
3443
+ "step": 567
3444
+ },
3445
+ {
3446
+ "epoch": 0.64,
3447
+ "learning_rate": 0.00018797405313683818,
3448
+ "loss": 0.0946,
3449
+ "step": 568
3450
+ },
3451
+ {
3452
+ "epoch": 0.64,
3453
+ "learning_rate": 0.00018793180017016202,
3454
+ "loss": 0.0871,
3455
+ "step": 569
3456
+ },
3457
+ {
3458
+ "epoch": 0.64,
3459
+ "learning_rate": 0.00018788947787207728,
3460
+ "loss": 0.0833,
3461
+ "step": 570
3462
+ },
3463
+ {
3464
+ "epoch": 0.64,
3465
+ "learning_rate": 0.00018784708627595363,
3466
+ "loss": 0.084,
3467
+ "step": 571
3468
+ },
3469
+ {
3470
+ "epoch": 0.64,
3471
+ "learning_rate": 0.0001878046254152156,
3472
+ "loss": 0.0908,
3473
+ "step": 572
3474
+ },
3475
+ {
3476
+ "epoch": 0.65,
3477
+ "learning_rate": 0.00018776209532334214,
3478
+ "loss": 0.0919,
3479
+ "step": 573
3480
+ },
3481
+ {
3482
+ "epoch": 0.65,
3483
+ "learning_rate": 0.0001877194960338669,
3484
+ "loss": 0.0851,
3485
+ "step": 574
3486
+ },
3487
+ {
3488
+ "epoch": 0.65,
3489
+ "learning_rate": 0.00018767682758037802,
3490
+ "loss": 0.1096,
3491
+ "step": 575
3492
+ },
3493
+ {
3494
+ "epoch": 0.65,
3495
+ "learning_rate": 0.00018763408999651824,
3496
+ "loss": 0.0959,
3497
+ "step": 576
3498
+ },
3499
+ {
3500
+ "epoch": 0.65,
3501
+ "learning_rate": 0.0001875912833159848,
3502
+ "loss": 0.0969,
3503
+ "step": 577
3504
+ },
3505
+ {
3506
+ "epoch": 0.65,
3507
+ "learning_rate": 0.00018754840757252933,
3508
+ "loss": 0.0971,
3509
+ "step": 578
3510
+ },
3511
+ {
3512
+ "epoch": 0.65,
3513
+ "learning_rate": 0.00018750546279995805,
3514
+ "loss": 0.1048,
3515
+ "step": 579
3516
+ },
3517
+ {
3518
+ "epoch": 0.65,
3519
+ "learning_rate": 0.0001874624490321315,
3520
+ "loss": 0.0874,
3521
+ "step": 580
3522
+ },
3523
+ {
3524
+ "epoch": 0.65,
3525
+ "learning_rate": 0.00018741936630296466,
3526
+ "loss": 0.0753,
3527
+ "step": 581
3528
+ },
3529
+ {
3530
+ "epoch": 0.66,
3531
+ "learning_rate": 0.00018737621464642688,
3532
+ "loss": 0.0956,
3533
+ "step": 582
3534
+ },
3535
+ {
3536
+ "epoch": 0.66,
3537
+ "learning_rate": 0.0001873329940965419,
3538
+ "loss": 0.0831,
3539
+ "step": 583
3540
+ },
3541
+ {
3542
+ "epoch": 0.66,
3543
+ "learning_rate": 0.00018728970468738764,
3544
+ "loss": 0.106,
3545
+ "step": 584
3546
+ },
3547
+ {
3548
+ "epoch": 0.66,
3549
+ "learning_rate": 0.00018724634645309656,
3550
+ "loss": 0.0888,
3551
+ "step": 585
3552
+ },
3553
+ {
3554
+ "epoch": 0.66,
3555
+ "learning_rate": 0.0001872029194278551,
3556
+ "loss": 0.1054,
3557
+ "step": 586
3558
+ },
3559
+ {
3560
+ "epoch": 0.66,
3561
+ "learning_rate": 0.00018715942364590417,
3562
+ "loss": 0.0943,
3563
+ "step": 587
3564
+ },
3565
+ {
3566
+ "epoch": 0.66,
3567
+ "learning_rate": 0.00018711585914153874,
3568
+ "loss": 0.0985,
3569
+ "step": 588
3570
+ },
3571
+ {
3572
+ "epoch": 0.66,
3573
+ "learning_rate": 0.0001870722259491081,
3574
+ "loss": 0.0857,
3575
+ "step": 589
3576
+ },
3577
+ {
3578
+ "epoch": 0.66,
3579
+ "learning_rate": 0.00018702852410301554,
3580
+ "loss": 0.1067,
3581
+ "step": 590
3582
+ },
3583
+ {
3584
+ "epoch": 0.67,
3585
+ "learning_rate": 0.00018698475363771862,
3586
+ "loss": 0.0879,
3587
+ "step": 591
3588
+ },
3589
+ {
3590
+ "epoch": 0.67,
3591
+ "learning_rate": 0.00018694091458772892,
3592
+ "loss": 0.0838,
3593
+ "step": 592
3594
+ },
3595
+ {
3596
+ "epoch": 0.67,
3597
+ "learning_rate": 0.00018689700698761217,
3598
+ "loss": 0.1042,
3599
+ "step": 593
3600
+ },
3601
+ {
3602
+ "epoch": 0.67,
3603
+ "learning_rate": 0.00018685303087198808,
3604
+ "loss": 0.0993,
3605
+ "step": 594
3606
+ },
3607
+ {
3608
+ "epoch": 0.67,
3609
+ "learning_rate": 0.00018680898627553038,
3610
+ "loss": 0.088,
3611
+ "step": 595
3612
+ },
3613
+ {
3614
+ "epoch": 0.67,
3615
+ "learning_rate": 0.00018676487323296688,
3616
+ "loss": 0.0862,
3617
+ "step": 596
3618
+ },
3619
+ {
3620
+ "epoch": 0.67,
3621
+ "learning_rate": 0.00018672069177907928,
3622
+ "loss": 0.1039,
3623
+ "step": 597
3624
+ },
3625
+ {
3626
+ "epoch": 0.67,
3627
+ "learning_rate": 0.0001866764419487032,
3628
+ "loss": 0.0858,
3629
+ "step": 598
3630
+ },
3631
+ {
3632
+ "epoch": 0.68,
3633
+ "learning_rate": 0.00018663212377672829,
3634
+ "loss": 0.0855,
3635
+ "step": 599
3636
+ },
3637
+ {
3638
+ "epoch": 0.68,
3639
+ "learning_rate": 0.00018658773729809792,
3640
+ "loss": 0.0897,
3641
+ "step": 600
3642
+ },
3643
+ {
3644
+ "epoch": 0.68,
3645
+ "learning_rate": 0.0001865432825478095,
3646
+ "loss": 0.0898,
3647
+ "step": 601
3648
+ },
3649
+ {
3650
+ "epoch": 0.68,
3651
+ "learning_rate": 0.00018649875956091414,
3652
+ "loss": 0.0981,
3653
+ "step": 602
3654
+ },
3655
+ {
3656
+ "epoch": 0.68,
3657
+ "learning_rate": 0.00018645416837251676,
3658
+ "loss": 0.0891,
3659
+ "step": 603
3660
+ },
3661
+ {
3662
+ "epoch": 0.68,
3663
+ "learning_rate": 0.00018640950901777613,
3664
+ "loss": 0.0928,
3665
+ "step": 604
3666
+ },
3667
+ {
3668
+ "epoch": 0.68,
3669
+ "learning_rate": 0.00018636478153190466,
3670
+ "loss": 0.0865,
3671
+ "step": 605
3672
+ },
3673
+ {
3674
+ "epoch": 0.68,
3675
+ "learning_rate": 0.00018631998595016862,
3676
+ "loss": 0.0897,
3677
+ "step": 606
3678
+ },
3679
+ {
3680
+ "epoch": 0.68,
3681
+ "learning_rate": 0.00018627512230788785,
3682
+ "loss": 0.081,
3683
+ "step": 607
3684
+ },
3685
+ {
3686
+ "epoch": 0.69,
3687
+ "learning_rate": 0.00018623019064043585,
3688
+ "loss": 0.0997,
3689
+ "step": 608
3690
+ },
3691
+ {
3692
+ "epoch": 0.69,
3693
+ "learning_rate": 0.00018618519098323986,
3694
+ "loss": 0.0856,
3695
+ "step": 609
3696
+ },
3697
+ {
3698
+ "epoch": 0.69,
3699
+ "learning_rate": 0.00018614012337178068,
3700
+ "loss": 0.1042,
3701
+ "step": 610
3702
+ },
3703
+ {
3704
+ "epoch": 0.69,
3705
+ "learning_rate": 0.00018609498784159266,
3706
+ "loss": 0.095,
3707
+ "step": 611
3708
+ },
3709
+ {
3710
+ "epoch": 0.69,
3711
+ "learning_rate": 0.00018604978442826367,
3712
+ "loss": 0.0814,
3713
+ "step": 612
3714
+ },
3715
+ {
3716
+ "epoch": 0.69,
3717
+ "learning_rate": 0.00018600451316743525,
3718
+ "loss": 0.0855,
3719
+ "step": 613
3720
+ },
3721
+ {
3722
+ "epoch": 0.69,
3723
+ "learning_rate": 0.00018595917409480227,
3724
+ "loss": 0.0971,
3725
+ "step": 614
3726
+ },
3727
+ {
3728
+ "epoch": 0.69,
3729
+ "learning_rate": 0.00018591376724611317,
3730
+ "loss": 0.0899,
3731
+ "step": 615
3732
+ },
3733
+ {
3734
+ "epoch": 0.69,
3735
+ "learning_rate": 0.00018586829265716977,
3736
+ "loss": 0.0902,
3737
+ "step": 616
3738
+ },
3739
+ {
3740
+ "epoch": 0.7,
3741
+ "learning_rate": 0.00018582275036382732,
3742
+ "loss": 0.1028,
3743
+ "step": 617
3744
+ },
3745
+ {
3746
+ "epoch": 0.7,
3747
+ "learning_rate": 0.00018577714040199448,
3748
+ "loss": 0.0919,
3749
+ "step": 618
3750
+ },
3751
+ {
3752
+ "epoch": 0.7,
3753
+ "learning_rate": 0.00018573146280763324,
3754
+ "loss": 0.0951,
3755
+ "step": 619
3756
+ },
3757
+ {
3758
+ "epoch": 0.7,
3759
+ "learning_rate": 0.00018568571761675893,
3760
+ "loss": 0.085,
3761
+ "step": 620
3762
+ },
3763
+ {
3764
+ "epoch": 0.7,
3765
+ "learning_rate": 0.00018563990486544017,
3766
+ "loss": 0.0873,
3767
+ "step": 621
3768
+ },
3769
+ {
3770
+ "epoch": 0.7,
3771
+ "learning_rate": 0.0001855940245897988,
3772
+ "loss": 0.0938,
3773
+ "step": 622
3774
+ },
3775
+ {
3776
+ "epoch": 0.7,
3777
+ "learning_rate": 0.00018554807682601005,
3778
+ "loss": 0.0822,
3779
+ "step": 623
3780
+ },
3781
+ {
3782
+ "epoch": 0.7,
3783
+ "learning_rate": 0.00018550206161030216,
3784
+ "loss": 0.0894,
3785
+ "step": 624
3786
+ },
3787
+ {
3788
+ "epoch": 0.7,
3789
+ "learning_rate": 0.0001854559789789567,
3790
+ "loss": 0.0938,
3791
+ "step": 625
3792
+ },
3793
+ {
3794
+ "epoch": 0.71,
3795
+ "learning_rate": 0.00018540982896830834,
3796
+ "loss": 0.0791,
3797
+ "step": 626
3798
+ },
3799
+ {
3800
+ "epoch": 0.71,
3801
+ "learning_rate": 0.00018536361161474485,
3802
+ "loss": 0.0873,
3803
+ "step": 627
3804
+ },
3805
+ {
3806
+ "epoch": 0.71,
3807
+ "learning_rate": 0.00018531732695470723,
3808
+ "loss": 0.0903,
3809
+ "step": 628
3810
+ },
3811
+ {
3812
+ "epoch": 0.71,
3813
+ "learning_rate": 0.00018527097502468934,
3814
+ "loss": 0.087,
3815
+ "step": 629
3816
+ },
3817
+ {
3818
+ "epoch": 0.71,
3819
+ "learning_rate": 0.00018522455586123825,
3820
+ "loss": 0.0921,
3821
+ "step": 630
3822
+ },
3823
+ {
3824
+ "epoch": 0.71,
3825
+ "learning_rate": 0.000185178069500954,
3826
+ "loss": 0.1115,
3827
+ "step": 631
3828
+ },
3829
+ {
3830
+ "epoch": 0.71,
3831
+ "learning_rate": 0.00018513151598048956,
3832
+ "loss": 0.1017,
3833
+ "step": 632
3834
+ },
3835
+ {
3836
+ "epoch": 0.71,
3837
+ "learning_rate": 0.0001850848953365509,
3838
+ "loss": 0.088,
3839
+ "step": 633
3840
+ },
3841
+ {
3842
+ "epoch": 0.71,
3843
+ "learning_rate": 0.0001850382076058969,
3844
+ "loss": 0.0903,
3845
+ "step": 634
3846
+ },
3847
+ {
3848
+ "epoch": 0.72,
3849
+ "learning_rate": 0.0001849914528253394,
3850
+ "loss": 0.0888,
3851
+ "step": 635
3852
+ },
3853
+ {
3854
+ "epoch": 0.72,
3855
+ "learning_rate": 0.00018494463103174296,
3856
+ "loss": 0.0961,
3857
+ "step": 636
3858
+ },
3859
+ {
3860
+ "epoch": 0.72,
3861
+ "learning_rate": 0.0001848977422620251,
3862
+ "loss": 0.0853,
3863
+ "step": 637
3864
+ },
3865
+ {
3866
+ "epoch": 0.72,
3867
+ "learning_rate": 0.00018485078655315612,
3868
+ "loss": 0.0918,
3869
+ "step": 638
3870
+ },
3871
+ {
3872
+ "epoch": 0.72,
3873
+ "learning_rate": 0.00018480376394215908,
3874
+ "loss": 0.0778,
3875
+ "step": 639
3876
+ },
3877
+ {
3878
+ "epoch": 0.72,
3879
+ "learning_rate": 0.0001847566744661098,
3880
+ "loss": 0.0748,
3881
+ "step": 640
3882
+ },
3883
+ {
3884
+ "epoch": 0.72,
3885
+ "learning_rate": 0.00018470951816213686,
3886
+ "loss": 0.0901,
3887
+ "step": 641
3888
+ },
3889
+ {
3890
+ "epoch": 0.72,
3891
+ "learning_rate": 0.00018466229506742147,
3892
+ "loss": 0.0891,
3893
+ "step": 642
3894
+ },
3895
+ {
3896
+ "epoch": 0.72,
3897
+ "learning_rate": 0.00018461500521919753,
3898
+ "loss": 0.0926,
3899
+ "step": 643
3900
+ },
3901
+ {
3902
+ "epoch": 0.73,
3903
+ "learning_rate": 0.00018456764865475153,
3904
+ "loss": 0.0991,
3905
+ "step": 644
3906
+ },
3907
+ {
3908
+ "epoch": 0.73,
3909
+ "learning_rate": 0.00018452022541142268,
3910
+ "loss": 0.0947,
3911
+ "step": 645
3912
+ },
3913
+ {
3914
+ "epoch": 0.73,
3915
+ "learning_rate": 0.00018447273552660266,
3916
+ "loss": 0.0861,
3917
+ "step": 646
3918
+ },
3919
+ {
3920
+ "epoch": 0.73,
3921
+ "learning_rate": 0.0001844251790377357,
3922
+ "loss": 0.0908,
3923
+ "step": 647
3924
+ },
3925
+ {
3926
+ "epoch": 0.73,
3927
+ "learning_rate": 0.00018437755598231856,
3928
+ "loss": 0.0939,
3929
+ "step": 648
3930
+ },
3931
+ {
3932
+ "epoch": 0.73,
3933
+ "learning_rate": 0.00018432986639790056,
3934
+ "loss": 0.1003,
3935
+ "step": 649
3936
+ },
3937
+ {
3938
+ "epoch": 0.73,
3939
+ "learning_rate": 0.00018428211032208336,
3940
+ "loss": 0.0959,
3941
+ "step": 650
3942
+ },
3943
+ {
3944
+ "epoch": 0.73,
3945
+ "learning_rate": 0.00018423428779252107,
3946
+ "loss": 0.0868,
3947
+ "step": 651
3948
+ },
3949
+ {
3950
+ "epoch": 0.73,
3951
+ "learning_rate": 0.0001841863988469203,
3952
+ "loss": 0.094,
3953
+ "step": 652
3954
+ },
3955
+ {
3956
+ "epoch": 0.74,
3957
+ "learning_rate": 0.00018413844352303991,
3958
+ "loss": 0.0926,
3959
+ "step": 653
3960
+ },
3961
+ {
3962
+ "epoch": 0.74,
3963
+ "learning_rate": 0.0001840904218586911,
3964
+ "loss": 0.0785,
3965
+ "step": 654
3966
+ },
3967
+ {
3968
+ "epoch": 0.74,
3969
+ "learning_rate": 0.00018404233389173746,
3970
+ "loss": 0.1018,
3971
+ "step": 655
3972
+ },
3973
+ {
3974
+ "epoch": 0.74,
3975
+ "learning_rate": 0.00018399417966009484,
3976
+ "loss": 0.0924,
3977
+ "step": 656
3978
+ },
3979
+ {
3980
+ "epoch": 0.74,
3981
+ "learning_rate": 0.00018394595920173123,
3982
+ "loss": 0.0941,
3983
+ "step": 657
3984
+ },
3985
+ {
3986
+ "epoch": 0.74,
3987
+ "learning_rate": 0.00018389767255466697,
3988
+ "loss": 0.0779,
3989
+ "step": 658
3990
+ },
3991
+ {
3992
+ "epoch": 0.74,
3993
+ "learning_rate": 0.00018384931975697451,
3994
+ "loss": 0.0982,
3995
+ "step": 659
3996
+ },
3997
+ {
3998
+ "epoch": 0.74,
3999
+ "learning_rate": 0.00018380090084677854,
4000
+ "loss": 0.0945,
4001
+ "step": 660
4002
+ },
4003
+ {
4004
+ "epoch": 0.74,
4005
+ "learning_rate": 0.00018375241586225576,
4006
+ "loss": 0.0759,
4007
+ "step": 661
4008
+ },
4009
+ {
4010
+ "epoch": 0.75,
4011
+ "learning_rate": 0.00018370386484163503,
4012
+ "loss": 0.082,
4013
+ "step": 662
4014
+ },
4015
+ {
4016
+ "epoch": 0.75,
4017
+ "learning_rate": 0.0001836552478231973,
4018
+ "loss": 0.0918,
4019
+ "step": 663
4020
+ },
4021
+ {
4022
+ "epoch": 0.75,
4023
+ "learning_rate": 0.0001836065648452755,
4024
+ "loss": 0.086,
4025
+ "step": 664
4026
+ },
4027
+ {
4028
+ "epoch": 0.75,
4029
+ "learning_rate": 0.00018355781594625467,
4030
+ "loss": 0.0996,
4031
+ "step": 665
4032
+ },
4033
+ {
4034
+ "epoch": 0.75,
4035
+ "learning_rate": 0.00018350900116457166,
4036
+ "loss": 0.0928,
4037
+ "step": 666
4038
+ },
4039
+ {
4040
+ "epoch": 0.75,
4041
+ "learning_rate": 0.0001834601205387154,
4042
+ "loss": 0.0992,
4043
+ "step": 667
4044
+ },
4045
+ {
4046
+ "epoch": 0.75,
4047
+ "learning_rate": 0.00018341117410722676,
4048
+ "loss": 0.0871,
4049
+ "step": 668
4050
+ },
4051
+ {
4052
+ "epoch": 0.75,
4053
+ "learning_rate": 0.00018336216190869835,
4054
+ "loss": 0.0909,
4055
+ "step": 669
4056
+ },
4057
+ {
4058
+ "epoch": 0.76,
4059
+ "learning_rate": 0.00018331308398177477,
4060
+ "loss": 0.0818,
4061
+ "step": 670
4062
+ },
4063
+ {
4064
+ "epoch": 0.76,
4065
+ "learning_rate": 0.00018326394036515236,
4066
+ "loss": 0.0904,
4067
+ "step": 671
4068
+ },
4069
+ {
4070
+ "epoch": 0.76,
4071
+ "learning_rate": 0.0001832147310975793,
4072
+ "loss": 0.0944,
4073
+ "step": 672
4074
+ },
4075
+ {
4076
+ "epoch": 0.76,
4077
+ "learning_rate": 0.0001831654562178555,
4078
+ "loss": 0.0814,
4079
+ "step": 673
4080
+ },
4081
+ {
4082
+ "epoch": 0.76,
4083
+ "learning_rate": 0.00018311611576483268,
4084
+ "loss": 0.0935,
4085
+ "step": 674
4086
+ },
4087
+ {
4088
+ "epoch": 0.76,
4089
+ "learning_rate": 0.00018306670977741418,
4090
+ "loss": 0.0925,
4091
+ "step": 675
4092
+ },
4093
+ {
4094
+ "epoch": 0.76,
4095
+ "learning_rate": 0.000183017238294555,
4096
+ "loss": 0.0942,
4097
+ "step": 676
4098
+ },
4099
+ {
4100
+ "epoch": 0.76,
4101
+ "learning_rate": 0.0001829677013552619,
4102
+ "loss": 0.0934,
4103
+ "step": 677
4104
+ },
4105
+ {
4106
+ "epoch": 0.76,
4107
+ "learning_rate": 0.0001829180989985931,
4108
+ "loss": 0.0911,
4109
+ "step": 678
4110
+ },
4111
+ {
4112
+ "epoch": 0.77,
4113
+ "learning_rate": 0.0001828684312636585,
4114
+ "loss": 0.0781,
4115
+ "step": 679
4116
+ },
4117
+ {
4118
+ "epoch": 0.77,
4119
+ "learning_rate": 0.00018281869818961952,
4120
+ "loss": 0.0843,
4121
+ "step": 680
4122
+ },
4123
+ {
4124
+ "epoch": 0.77,
4125
+ "learning_rate": 0.00018276889981568906,
4126
+ "loss": 0.0821,
4127
+ "step": 681
4128
+ },
4129
+ {
4130
+ "epoch": 0.77,
4131
+ "learning_rate": 0.0001827190361811316,
4132
+ "loss": 0.0944,
4133
+ "step": 682
4134
+ },
4135
+ {
4136
+ "epoch": 0.77,
4137
+ "learning_rate": 0.00018266910732526296,
4138
+ "loss": 0.095,
4139
+ "step": 683
4140
+ },
4141
+ {
4142
+ "epoch": 0.77,
4143
+ "learning_rate": 0.00018261911328745051,
4144
+ "loss": 0.0927,
4145
+ "step": 684
4146
+ },
4147
+ {
4148
+ "epoch": 0.77,
4149
+ "learning_rate": 0.0001825690541071129,
4150
+ "loss": 0.0844,
4151
+ "step": 685
4152
+ },
4153
+ {
4154
+ "epoch": 0.77,
4155
+ "learning_rate": 0.00018251892982372022,
4156
+ "loss": 0.0947,
4157
+ "step": 686
4158
+ },
4159
+ {
4160
+ "epoch": 0.77,
4161
+ "learning_rate": 0.00018246874047679384,
4162
+ "loss": 0.0718,
4163
+ "step": 687
4164
+ },
4165
+ {
4166
+ "epoch": 0.78,
4167
+ "learning_rate": 0.00018241848610590645,
4168
+ "loss": 0.0756,
4169
+ "step": 688
4170
+ },
4171
+ {
4172
+ "epoch": 0.78,
4173
+ "learning_rate": 0.00018236816675068203,
4174
+ "loss": 0.0861,
4175
+ "step": 689
4176
+ },
4177
+ {
4178
+ "epoch": 0.78,
4179
+ "learning_rate": 0.00018231778245079573,
4180
+ "loss": 0.0884,
4181
+ "step": 690
4182
+ },
4183
+ {
4184
+ "epoch": 0.78,
4185
+ "learning_rate": 0.00018226733324597406,
4186
+ "loss": 0.0953,
4187
+ "step": 691
4188
+ },
4189
+ {
4190
+ "epoch": 0.78,
4191
+ "learning_rate": 0.00018221681917599453,
4192
+ "loss": 0.0883,
4193
+ "step": 692
4194
+ },
4195
+ {
4196
+ "epoch": 0.78,
4197
+ "learning_rate": 0.00018216624028068585,
4198
+ "loss": 0.0894,
4199
+ "step": 693
4200
+ },
4201
+ {
4202
+ "epoch": 0.78,
4203
+ "learning_rate": 0.0001821155965999279,
4204
+ "loss": 0.0988,
4205
+ "step": 694
4206
+ },
4207
+ {
4208
+ "epoch": 0.78,
4209
+ "learning_rate": 0.0001820648881736516,
4210
+ "loss": 0.1041,
4211
+ "step": 695
4212
+ },
4213
+ {
4214
+ "epoch": 0.78,
4215
+ "learning_rate": 0.00018201411504183888,
4216
+ "loss": 0.0812,
4217
+ "step": 696
4218
+ },
4219
+ {
4220
+ "epoch": 0.79,
4221
+ "learning_rate": 0.00018196327724452277,
4222
+ "loss": 0.0829,
4223
+ "step": 697
4224
+ },
4225
+ {
4226
+ "epoch": 0.79,
4227
+ "learning_rate": 0.00018191237482178724,
4228
+ "loss": 0.0861,
4229
+ "step": 698
4230
+ },
4231
+ {
4232
+ "epoch": 0.79,
4233
+ "learning_rate": 0.00018186140781376722,
4234
+ "loss": 0.0853,
4235
+ "step": 699
4236
+ },
4237
+ {
4238
+ "epoch": 0.79,
4239
+ "learning_rate": 0.00018181037626064853,
4240
+ "loss": 0.102,
4241
+ "step": 700
4242
+ },
4243
+ {
4244
+ "epoch": 0.79,
4245
+ "learning_rate": 0.00018175928020266796,
4246
+ "loss": 0.1039,
4247
+ "step": 701
4248
+ },
4249
+ {
4250
+ "epoch": 0.79,
4251
+ "learning_rate": 0.0001817081196801131,
4252
+ "loss": 0.0826,
4253
+ "step": 702
4254
+ },
4255
+ {
4256
+ "epoch": 0.79,
4257
+ "learning_rate": 0.00018165689473332238,
4258
+ "loss": 0.0881,
4259
+ "step": 703
4260
+ },
4261
+ {
4262
+ "epoch": 0.79,
4263
+ "learning_rate": 0.00018160560540268504,
4264
+ "loss": 0.0887,
4265
+ "step": 704
4266
+ },
4267
+ {
4268
+ "epoch": 0.79,
4269
+ "learning_rate": 0.00018155425172864106,
4270
+ "loss": 0.0849,
4271
+ "step": 705
4272
+ },
4273
+ {
4274
+ "epoch": 0.8,
4275
+ "learning_rate": 0.00018150283375168114,
4276
+ "loss": 0.0922,
4277
+ "step": 706
4278
+ },
4279
+ {
4280
+ "epoch": 0.8,
4281
+ "learning_rate": 0.00018145135151234677,
4282
+ "loss": 0.1013,
4283
+ "step": 707
4284
+ },
4285
+ {
4286
+ "epoch": 0.8,
4287
+ "learning_rate": 0.00018139980505123003,
4288
+ "loss": 0.0775,
4289
+ "step": 708
4290
+ },
4291
+ {
4292
+ "epoch": 0.8,
4293
+ "learning_rate": 0.0001813481944089736,
4294
+ "loss": 0.0842,
4295
+ "step": 709
4296
+ },
4297
+ {
4298
+ "epoch": 0.8,
4299
+ "learning_rate": 0.0001812965196262709,
4300
+ "loss": 0.0792,
4301
+ "step": 710
4302
+ }
4303
+ ],
4304
+ "logging_steps": 1,
4305
+ "max_steps": 3548,
4306
+ "num_input_tokens_seen": 0,
4307
+ "num_train_epochs": 4,
4308
+ "save_steps": 355,
4309
+ "total_flos": 1.3009661217545912e+19,
4310
+ "train_batch_size": 2,
4311
+ "trial_name": null,
4312
+ "trial_params": null
4313
+ }
checkpoint-710/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ee180f91ad8d20571236e775cec6a894a757483f3e26abb3aad13760bd2849b
3
+ size 4923
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mixtral-8x7B-Instruct-v0.1",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mixtral",
15
+ "num_attention_heads": 32,
16
+ "num_experts_per_tok": 2,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 8,
19
+ "num_local_experts": 8,
20
+ "output_router_logits": true,
21
+ "quantization_config": {
22
+ "bnb_4bit_compute_dtype": "bfloat16",
23
+ "bnb_4bit_quant_type": "nf4",
24
+ "bnb_4bit_use_double_quant": true,
25
+ "llm_int8_enable_fp32_cpu_offload": false,
26
+ "llm_int8_has_fp16_weight": false,
27
+ "llm_int8_skip_modules": null,
28
+ "llm_int8_threshold": 6.0,
29
+ "load_in_4bit": true,
30
+ "load_in_8bit": false,
31
+ "quant_method": "bitsandbytes"
32
+ },
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_theta": 1000000.0,
35
+ "router_aux_loss_coef": 0.02,
36
+ "sliding_window": null,
37
+ "tie_word_embeddings": false,
38
+ "torch_dtype": "bfloat16",
39
+ "transformers_version": "4.37.0",
40
+ "use_cache": false,
41
+ "vocab_size": 32000
42
+ }
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56a874d2b35edb3cbae8b0c0a854c6047d72cdb81d3190815088ecb26af84723
3
+ size 54936991
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13435f9b9643ab5c29ea598053e36e5512b01829f466a225f678d9f1f9c0f1fe
3
+ size 15607
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2429c130756c1d683da7393342d610440e847f1a1b5d061a89caf054bc39159
3
+ size 15607
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe17844350a7b4c686b4481b6d190258f17c79715a3871c9cdbdeadc2c5c10e0
3
+ size 627
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "trust_remote_code": true,
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false,
44
+ "use_fast": true
45
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ee180f91ad8d20571236e775cec6a894a757483f3e26abb3aad13760bd2849b
3
+ size 4923