--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 model-index: - name: empower-functions-more-tools-parallel results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 model_type: AutoModelForCausalLM tokenizer_type: LlamaTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false chat_template: inst datasets: - path: ./data/with_function_response/more_functions/function_used_training.jsonl type: sharegpt conversation: mistral - path: ./data/with_function_response/more_functions/function_not_used_training.jsonl type: sharegpt conversation: mistral - path: ./data/with_function_response/parallel_call/missing_parameter_data_training.jsonl type: sharegpt conversation: mistral - path: ./data/with_function_response/parallel_call/parallel_data_training.jsonl type: sharegpt conversation: mistral dataset_prepared_path: last_run_prepared val_set_size: 0.01 output_dir: ../empower-functions-more-tools-parallel model_config: output_router_logits: true adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 64 lora_dropout: 0.05 lora_target_modules: - q_proj - k_proj - v_proj - o_proj wandb_project: empower-functions wandb_name: empower-functions-more-tools-parallel wandb_log_model: end hub_model_id: dyang415/empower-functions-more-tools-parallel gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true logging_steps: 1 flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 eval_table_size: eval_max_new_tokens: 256 eval_steps: 0.05 save_steps: 0.1 debug: weight_decay: 0.0 fsdp: fsdp_config: ```

# empower-functions-more-tools-parallel This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0913 | 0.0 | 1 | 2.0864 | | 0.0992 | 0.2 | 178 | 0.1038 | | 0.0923 | 0.4 | 356 | 0.0957 | | 0.0847 | 0.6 | 534 | 0.0938 | | 0.1034 | 0.8 | 712 | 0.0925 | | 0.1062 | 1.0 | 890 | 0.0901 | | 0.1006 | 1.19 | 1068 | 0.0894 | | 0.084 | 1.39 | 1246 | 0.0882 | | 0.0798 | 1.59 | 1424 | 0.0875 | | 0.0752 | 1.79 | 1602 | 0.0849 | | 0.0772 | 1.99 | 1780 | 0.0846 | | 0.0824 | 2.17 | 1958 | 0.0849 | | 0.0792 | 2.37 | 2136 | 0.0843 | | 0.0627 | 2.57 | 2314 | 0.0837 | | 0.0777 | 2.77 | 2492 | 0.0831 | | 0.0636 | 2.98 | 2670 | 0.0827 | | 0.0624 | 3.16 | 2848 | 0.0855 | | 0.0612 | 3.36 | 3026 | 0.0861 | | 0.0649 | 3.56 | 3204 | 0.0861 | | 0.0641 | 3.76 | 3382 | 0.0865 | ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0 - Pytorch 2.0.1+cu117 - Datasets 2.17.1 - Tokenizers 0.15.0