--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 model-index: - name: mixtral-fc-w-resp results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 model_type: AutoModelForCausalLM tokenizer_type: LlamaTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false chat_template: inst datasets: - path: ./data/with_function_response/function_not_used_training.jsonl type: sharegpt conversation: mistral - path: ./data/with_function_response/no_function_training.jsonl type: sharegpt conversation: mistral - path: ./data/with_function_response/function_used_training.jsonl type: sharegpt conversation: mistral hub_model_id: dyang415/mixtral-fc-w-resp dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ../mixtral-fc-w-resp model_config: output_router_logits: true adapter: qlora lora_model_dir: sequence_len: 16384 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 64 lora_dropout: 0.05 lora_target_modules: - q_proj - k_proj - v_proj - o_proj # wandb_project: function-call # wandb_name: mixtral-instruct-lora--v1 # wandb_log_model: end # hub_model_id: dyang415/mixtral-lora-v0 gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true logging_steps: 1 flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: weight_decay: 0.0 fsdp: fsdp_config: ```

# mixtral-fc-w-resp This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0 - Pytorch 2.0.1+cu117 - Datasets 2.17.1 - Tokenizers 0.15.0