--- base_model: openai/whisper-large-v2 library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: whisper-large-v2-ft-cv16-1_random_mix-241031-v2 results: [] --- # whisper-large-v2-ft-cv16-1_random_mix-241031-v2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3848 | 1.0 | 56 | 2.3268 | | 1.7142 | 2.0 | 112 | 0.7692 | | 0.4967 | 3.0 | 168 | 0.1981 | | 0.2173 | 4.0 | 224 | 0.1893 | | 0.1942 | 5.0 | 280 | 0.1875 | | 0.1777 | 6.0 | 336 | 0.1885 | | 0.1649 | 7.0 | 392 | 0.1900 | | 0.1554 | 8.0 | 448 | 0.1904 | | 0.1478 | 9.0 | 504 | 0.1920 | | 0.1428 | 10.0 | 560 | 0.1927 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.0