--- base_model: openai/whisper-large-v2 library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: whisper-large-v2-ft-my_dataset_snr0_owner12_MPSENet-241018_bs8 results: [] --- # whisper-large-v2-ft-my_dataset_snr0_owner12_MPSENet-241018_bs8 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.8653 | 1.6667 | 25 | 0.8638 | | 0.1675 | 3.3333 | 50 | 0.0171 | | 0.0101 | 5.0 | 75 | 0.0068 | | 0.0025 | 6.6667 | 100 | 0.0032 | | 0.0 | 8.3333 | 125 | 0.0091 | | 0.0 | 10.0 | 150 | 0.0049 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1