--- license: apache-2.0 datasets: - dyyyyyyyy/ScaleQuest-Math language: - en metrics: - accuracy library_name: transformers pipeline_tag: text-generation ---

Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch

# Model Card for ScaleQuest-DeepSeekMath-7B-QGen We introduce ScaleQuest, a scalable and novel data synthesis method that utilizes small-size open-source models to generate questions from scratch without the need for seed data with complex augmentation constraints. * 📑 Project Page: [https://scalequest.github.io](https://scalequest.github.io/) * 💻 Code: [https://github.com/yyDing1/ScaleQuest](https://github.com/yyDing1/ScaleQuest/) * 📖 Paper: [Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch](https://arxiv.org/abs/2410.18693) * 💾 Models in the 🤗 HuggingFace Hub: [ScaleQuest-Models](https://huggingface.co/collections/dyyyyyyyy/scalequest-670a7dc2623c91990f28913b)

## Datasets & Models Math Dataset: [link](https://huggingface.co/datasets/dyyyyyyyy/ScaleQuest-Math) We release two question generator models and four problem-solving models. | Model | Type | MATH | Olympiad Bench | 🤗 HuggingFace
Download Link | | - | :-: | :-: | :-: | :-: | | ScaleQuest-DeepSeekMath-7B-QGen | question generator | - | - | [link](https://huggingface.co/dyyyyyyyy/ScaleQuest-DeepSeekMath-7B-QGen) | ScaleQuest-Qwen2-Math-7B-QGen | question generator | - | - | [link](https://huggingface.co/dyyyyyyyy/ScaleQuest-Qwen2-Math-7B-QGen) | Mistral-7B-ScaleQuest | problem solver | 62.9 | 26.8 | [link](https://huggingface.co/dyyyyyyyy/Mistral-7B-ScaleQuest) | | Llama3-8B-ScaleQuest | problem solver | 64.4 | 25.3 | [link](https://huggingface.co/dyyyyyyyy/Llama3-8B-ScaleQuest) | | DeepSeekMath-7B-ScaleQuest | problem solver | 66.6 | 29.9 | [link](https://huggingface.co/dyyyyyyyy/DeepSeekMath-7B-ScaleQuest) | | Qwen2-Math-7B-ScaleQuest | problem solver | 73.4 | 38.5 | [link](https://huggingface.co/dyyyyyyyy/Qwen2-Math-7B-ScaleQuest) | ## Demo usage Below is an example using `ScaleQuest-DeepSeekMath-7B-QGen` ```python from vllm import LLM, SamplingParams model_name = "dyyyyyyyy/ScaleQuest-DeepSeekMath-7B-QGen" pre_query_template = "<|begin▁of▁sentence|>User: " stop_tokens = ["<|begin▁of▁sentence|>", "<|end▁of▁sentence|>"] llm = LLM( model=model_name, tokenizer=model_name, tensor_parallel_size=1, max_model_len=4096, enable_prefix_caching=True, trust_remote_code=True, swap_space=16, gpu_memory_utilization=0.95, ) sampling_params = SamplingParams( n=4, max_tokens=1024, temperature=1.0, top_p=0.99, stop=stop_tokens, ) outputs = llm.generate(pre_query_template, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt for idx, generated_output in enumerate(output.outputs): generated_text = generated_output.text print(f"Sample {idx + 1}:") print(f"Prompt: {prompt!r}") print(f"Generated text: {generated_text!r}") print("-" * 50) ``` ## Citation ```bibtex @article{ding2024unleashing, title={Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch}, author={Ding, Yuyang and Shi, Xinyu and Liang, Xiaobo and Li, Juntao and Zhu, Qiaoming and Zhang, Min}, journal={https://arxiv.org/abs/2410.18693}, year={2024} } ```