Update README.md
Browse files
README.md
CHANGED
@@ -72,9 +72,9 @@ Here is an incomplate list of clients and libraries that are known to support GG
|
|
72 |
<!-- repositories-available start -->
|
73 |
## Repositories available
|
74 |
|
75 |
-
* [AWQ model(s) for GPU inference.](https://huggingface.co/
|
76 |
-
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/
|
77 |
-
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/
|
78 |
* [Meta Llama 2's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
|
79 |
<!-- repositories-available end -->
|
80 |
|
@@ -119,18 +119,18 @@ Refer to the Provided Files table below to see what files use which methods, and
|
|
119 |
|
120 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
121 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
122 |
-
| [llama-2-7b-chat.Q2_K.gguf](https://huggingface.co/
|
123 |
-
| [llama-2-7b-chat.Q3_K_S.gguf](https://huggingface.co/
|
124 |
-
| [llama-2-7b-chat.Q3_K_M.gguf](https://huggingface.co/
|
125 |
-
| [llama-2-7b-chat.Q3_K_L.gguf](https://huggingface.co/
|
126 |
-
| [llama-2-7b-chat.Q4_0.gguf](https://huggingface.co/
|
127 |
-
| [llama-2-7b-chat.Q4_K_S.gguf](https://huggingface.co/
|
128 |
-
| [llama-2-7b-chat.Q4_K_M.gguf](https://huggingface.co/
|
129 |
-
| [llama-2-7b-chat.Q5_0.gguf](https://huggingface.co/
|
130 |
-
| [llama-2-7b-chat.Q5_K_S.gguf](https://huggingface.co/
|
131 |
-
| [llama-2-7b-chat.Q5_K_M.gguf](https://huggingface.co/
|
132 |
-
| [llama-2-7b-chat.Q6_K.gguf](https://huggingface.co/
|
133 |
-
| [llama-2-7b-chat.Q8_0.gguf](https://huggingface.co/
|
134 |
|
135 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
136 |
|
@@ -150,7 +150,7 @@ The following clients/libraries will automatically download models for you, prov
|
|
150 |
|
151 |
### In `text-generation-webui`
|
152 |
|
153 |
-
Under Download Model, you can enter the model repo:
|
154 |
|
155 |
Then click Download.
|
156 |
|
@@ -165,7 +165,7 @@ pip3 install huggingface-hub>=0.17.1
|
|
165 |
Then you can download any individual model file to the current directory, at high speed, with a command like this:
|
166 |
|
167 |
```shell
|
168 |
-
huggingface-cli download
|
169 |
```
|
170 |
|
171 |
<details>
|
@@ -174,7 +174,7 @@ huggingface-cli download TheBloke/Llama-2-7b-Chat-GGUF llama-2-7b-chat.Q4_K_M.gg
|
|
174 |
You can also download multiple files at once with a pattern:
|
175 |
|
176 |
```shell
|
177 |
-
huggingface-cli download
|
178 |
```
|
179 |
|
180 |
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
|
@@ -188,7 +188,7 @@ pip3 install hf_transfer
|
|
188 |
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
|
189 |
|
190 |
```shell
|
191 |
-
HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download
|
192 |
```
|
193 |
|
194 |
Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
|
@@ -241,7 +241,7 @@ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
|
|
241 |
from ctransformers import AutoModelForCausalLM
|
242 |
|
243 |
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
|
244 |
-
llm = AutoModelForCausalLM.from_pretrained("
|
245 |
|
246 |
print(llm("AI is going to"))
|
247 |
```
|
|
|
72 |
<!-- repositories-available start -->
|
73 |
## Repositories available
|
74 |
|
75 |
+
* [AWQ model(s) for GPU inference.](https://huggingface.co/e-valente/Llama-2-7b-Chat-AWQ)
|
76 |
+
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/e-valente/Llama-2-7b-Chat-GPTQ)
|
77 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/e-valente/Llama-2-7b-Chat-GGUF)
|
78 |
* [Meta Llama 2's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
|
79 |
<!-- repositories-available end -->
|
80 |
|
|
|
119 |
|
120 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
121 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
122 |
+
| [llama-2-7b-chat.Q2_K.gguf](https://huggingface.co/e-valente/Llama-2-7b-Chat-GGUF/blob/main/llama-2-7b-chat.Q2_K.gguf) | Q2_K | 2 | 2.83 GB| 5.33 GB | smallest, significant quality loss - not recommended for most purposes |
|
123 |
+
| [llama-2-7b-chat.Q3_K_S.gguf](https://huggingface.co/e-valente/Llama-2-7b-Chat-GGUF/blob/main/llama-2-7b-chat.Q3_K_S.gguf) | Q3_K_S | 3 | 2.95 GB| 5.45 GB | very small, high quality loss |
|
124 |
+
| [llama-2-7b-chat.Q3_K_M.gguf](https://huggingface.co/e-valente/Llama-2-7b-Chat-GGUF/blob/main/llama-2-7b-chat.Q3_K_M.gguf) | Q3_K_M | 3 | 3.30 GB| 5.80 GB | very small, high quality loss |
|
125 |
+
| [llama-2-7b-chat.Q3_K_L.gguf](https://huggingface.co/e-valente/Llama-2-7b-Chat-GGUF/blob/main/llama-2-7b-chat.Q3_K_L.gguf) | Q3_K_L | 3 | 3.60 GB| 6.10 GB | small, substantial quality loss |
|
126 |
+
| [llama-2-7b-chat.Q4_0.gguf](https://huggingface.co/e-valente/Llama-2-7b-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_0.gguf) | Q4_0 | 4 | 3.83 GB| 6.33 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
|
127 |
+
| [llama-2-7b-chat.Q4_K_S.gguf](https://huggingface.co/e-valente/Llama-2-7b-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_K_S.gguf) | Q4_K_S | 4 | 3.86 GB| 6.36 GB | small, greater quality loss |
|
128 |
+
| [llama-2-7b-chat.Q4_K_M.gguf](https://huggingface.co/e-valente/Llama-2-7b-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_K_M.gguf) | Q4_K_M | 4 | 4.08 GB| 6.58 GB | medium, balanced quality - recommended |
|
129 |
+
| [llama-2-7b-chat.Q5_0.gguf](https://huggingface.co/e-valente/Llama-2-7b-Chat-GGUF/blob/main/llama-2-7b-chat.Q5_0.gguf) | Q5_0 | 5 | 4.65 GB| 7.15 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
|
130 |
+
| [llama-2-7b-chat.Q5_K_S.gguf](https://huggingface.co/e-valente/Llama-2-7b-Chat-GGUF/blob/main/llama-2-7b-chat.Q5_K_S.gguf) | Q5_K_S | 5 | 4.65 GB| 7.15 GB | large, low quality loss - recommended |
|
131 |
+
| [llama-2-7b-chat.Q5_K_M.gguf](https://huggingface.co/e-valente/Llama-2-7b-Chat-GGUF/blob/main/llama-2-7b-chat.Q5_K_M.gguf) | Q5_K_M | 5 | 4.78 GB| 7.28 GB | large, very low quality loss - recommended |
|
132 |
+
| [llama-2-7b-chat.Q6_K.gguf](https://huggingface.co/e-valente/Llama-2-7b-Chat-GGUF/blob/main/llama-2-7b-chat.Q6_K.gguf) | Q6_K | 6 | 5.53 GB| 8.03 GB | very large, extremely low quality loss |
|
133 |
+
| [llama-2-7b-chat.Q8_0.gguf](https://huggingface.co/e-valente/Llama-2-7b-Chat-GGUF/blob/main/llama-2-7b-chat.Q8_0.gguf) | Q8_0 | 8 | 7.16 GB| 9.66 GB | very large, extremely low quality loss - not recommended |
|
134 |
|
135 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
136 |
|
|
|
150 |
|
151 |
### In `text-generation-webui`
|
152 |
|
153 |
+
Under Download Model, you can enter the model repo: e-valente/Llama-2-7b-Chat-GGUF and below it, a specific filename to download, such as: llama-2-7b-chat.q4_K_M.gguf.
|
154 |
|
155 |
Then click Download.
|
156 |
|
|
|
165 |
Then you can download any individual model file to the current directory, at high speed, with a command like this:
|
166 |
|
167 |
```shell
|
168 |
+
huggingface-cli download e-valente/Llama-2-7b-Chat-GGUF llama-2-7b-chat.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
|
169 |
```
|
170 |
|
171 |
<details>
|
|
|
174 |
You can also download multiple files at once with a pattern:
|
175 |
|
176 |
```shell
|
177 |
+
huggingface-cli download e-valente/Llama-2-7b-Chat-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
|
178 |
```
|
179 |
|
180 |
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
|
|
|
188 |
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
|
189 |
|
190 |
```shell
|
191 |
+
HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download e-valente/Llama-2-7b-Chat-GGUF llama-2-7b-chat.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
|
192 |
```
|
193 |
|
194 |
Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
|
|
|
241 |
from ctransformers import AutoModelForCausalLM
|
242 |
|
243 |
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
|
244 |
+
llm = AutoModelForCausalLM.from_pretrained("e-valente/Llama-2-7b-Chat-GGUF", model_file="llama-2-7b-chat.q4_K_M.gguf", model_type="llama", gpu_layers=50)
|
245 |
|
246 |
print(llm("AI is going to"))
|
247 |
```
|