|
import importlib |
|
import math |
|
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch.cuda.amp import autocast |
|
|
|
from torch.nn import CrossEntropyLoss |
|
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList |
|
from transformers.generation.logits_process import LogitsProcessorList |
|
|
|
if TYPE_CHECKING: |
|
from transformers.generation.streamers import BaseStreamer |
|
from transformers.generation.utils import GenerateOutput |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training |
|
try: |
|
from einops import rearrange |
|
except ImportError: |
|
rearrange = None |
|
from torch import nn |
|
from monkey_model.modeling_qwen import QWenModel,QWenPreTrainedModel,QWenLMHeadModel |
|
SUPPORT_CUDA = torch.cuda.is_available() |
|
SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported() |
|
SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7 |
|
logger = logging.get_logger(__name__) |
|
class MonkeyModel(QWenModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
if past_key_values is None and torch.any(input_ids == self.config.visual['image_start_id']): |
|
bos_pos = torch.where(input_ids == self.config.visual['image_start_id']) |
|
eos_pos = torch.where(input_ids == self.config.visual['image_start_id'] + 1) |
|
assert (bos_pos[0] == eos_pos[0]).all() |
|
img_pos = torch.stack((bos_pos[0], bos_pos[1], eos_pos[1]), dim=1) |
|
images = [] |
|
for i, a, b in img_pos: |
|
image = input_ids[i][a + 1 : b - 1].tolist() |
|
image = image[ : image.index(self.config.visual['image_start_id'] + 2)] |
|
images.append(bytes(image).decode('utf-8')) |
|
windows,images_448 = self.visual.encode(images) |
|
patch_list = [] |
|
lora_idx = 0 |
|
for col in windows: |
|
for image_patch in col: |
|
patch_list.append(self.visual(image_patch,idx=lora_idx)) |
|
lora_idx += 1 |
|
|
|
global_feat = self.visual(images_448) |
|
local_feat = torch.cat(patch_list,dim=1) |
|
images = torch.cat([local_feat,global_feat],dim=1) |
|
assert images.shape[0] == len(images) |
|
else: |
|
images = None |
|
return super().forward(input_ids, |
|
past_key_values, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
head_mask,inputs_embeds, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
use_cache, |
|
output_attentions, |
|
output_hidden_states, |
|
return_dict, |
|
images) |
|
|
|
|
|
|
|
|
|
class MonkeyLMHeadModel(QWenLMHeadModel): |
|
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"] |
|
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
assert ( |
|
config.bf16 + config.fp16 + config.fp32 <= 1 |
|
), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true" |
|
|
|
autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0 |
|
|
|
if autoset_precision: |
|
if SUPPORT_BF16: |
|
logger.warn( |
|
"The model is automatically converting to bf16 for faster inference. " |
|
"If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"." |
|
) |
|
config.bf16 = True |
|
elif SUPPORT_FP16: |
|
logger.warn( |
|
"The model is automatically converting to fp16 for faster inference. " |
|
"If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"." |
|
) |
|
config.fp16 = True |
|
else: |
|
config.fp32 = True |
|
|
|
if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16: |
|
logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".") |
|
if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16: |
|
logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster") |
|
if config.fp32: |
|
if SUPPORT_BF16: |
|
logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".") |
|
elif SUPPORT_FP16: |
|
logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".") |
|
|
|
self.transformer = MonkeyModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
if config.bf16: |
|
self.transformer.bfloat16() |
|
self.lm_head.bfloat16() |
|
if config.fp16: |
|
self.transformer.half() |
|
self.lm_head.half() |
|
self.post_init() |
|
|
|
|
|
|