update model card README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
metrics:
|
@@ -16,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
# patentClassfication2
|
18 |
|
19 |
-
This model
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Accuracy: 0.
|
23 |
-
- F1: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -41,31 +42,23 @@ More information needed
|
|
41 |
### Training hyperparameters
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
-
- learning_rate: 2.
|
45 |
-
- train_batch_size:
|
46 |
- eval_batch_size: 8
|
47 |
-
- seed:
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: cosine
|
50 |
- lr_scheduler_warmup_ratio: 0.1
|
51 |
-
- lr_scheduler_warmup_steps:
|
52 |
-
- num_epochs:
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.1733 | 4.0 | 4440 | 0.7975 | 0.7328 | 0.7316 | 0.7266 | 0.7367 |
|
62 |
-
| 0.1242 | 5.0 | 5550 | 1.3035 | 0.7314 | 0.7396 | 0.7101 | 0.7716 |
|
63 |
-
| 0.0866 | 6.0 | 6660 | 1.6628 | 0.7272 | 0.7110 | 0.7464 | 0.6788 |
|
64 |
-
| 0.0493 | 7.0 | 7770 | 1.7728 | 0.7321 | 0.7285 | 0.7297 | 0.7274 |
|
65 |
-
| 0.0313 | 8.0 | 8880 | 2.0279 | 0.7383 | 0.7325 | 0.7402 | 0.7249 |
|
66 |
-
| 0.0187 | 9.0 | 9990 | 2.1956 | 0.7375 | 0.7445 | 0.7173 | 0.7739 |
|
67 |
-
| 0.0148 | 10.0 | 11100 | 2.2491 | 0.7355 | 0.7366 | 0.7256 | 0.7479 |
|
68 |
-
| 0.0129 | 11.0 | 12210 | 2.2694 | 0.7350 | 0.7378 | 0.7220 | 0.7543 |
|
69 |
|
70 |
|
71 |
### Framework versions
|
|
|
1 |
---
|
2 |
+
base_model: allenai/scibert_scivocab_uncased
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
|
|
17 |
|
18 |
# patentClassfication2
|
19 |
|
20 |
+
This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.6329
|
23 |
+
- Accuracy: 0.6513
|
24 |
+
- F1: 0.6099
|
25 |
+
- Precision: 0.6941
|
26 |
+
- Recall: 0.5438
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2.54241e-05
|
46 |
+
- train_batch_size: 8
|
47 |
- eval_batch_size: 8
|
48 |
+
- seed: 41
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: cosine
|
51 |
- lr_scheduler_warmup_ratio: 0.1
|
52 |
+
- lr_scheduler_warmup_steps: 24
|
53 |
+
- num_epochs: 3
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
58 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
59 |
+
| 0.635 | 1.0 | 4438 | 0.6329 | 0.6513 | 0.6099 | 0.6941 | 0.5438 |
|
60 |
+
| 0.5772 | 2.0 | 8876 | 0.6393 | 0.6721 | 0.6831 | 0.6624 | 0.7050 |
|
61 |
+
| 0.5355 | 3.0 | 13314 | 0.6558 | 0.6683 | 0.6768 | 0.6613 | 0.6931 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
### Framework versions
|