eclec commited on
Commit
f4e0c07
1 Parent(s): 34555a4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -22
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  tags:
3
  - generated_from_trainer
4
  metrics:
@@ -16,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # patentClassfication2
18
 
19
- This model was trained from scratch on the None dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.5108
22
- - Accuracy: 0.7492
23
- - F1: 0.7710
24
- - Precision: 0.7025
25
- - Recall: 0.8543
26
 
27
  ## Model description
28
 
@@ -41,31 +42,23 @@ More information needed
41
  ### Training hyperparameters
42
 
43
  The following hyperparameters were used during training:
44
- - learning_rate: 2.329139e-05
45
- - train_batch_size: 32
46
  - eval_batch_size: 8
47
- - seed: 18
48
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: cosine
50
  - lr_scheduler_warmup_ratio: 0.1
51
- - lr_scheduler_warmup_steps: 478
52
- - num_epochs: 11
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
- | 0.5264 | 1.0 | 1110 | 0.5108 | 0.7492 | 0.7710 | 0.7025 | 0.8543 |
59
- | 0.4405 | 2.0 | 2220 | 0.5624 | 0.7463 | 0.7295 | 0.7710 | 0.6923 |
60
- | 0.2972 | 3.0 | 3330 | 0.7480 | 0.7394 | 0.7224 | 0.7629 | 0.6859 |
61
- | 0.1733 | 4.0 | 4440 | 0.7975 | 0.7328 | 0.7316 | 0.7266 | 0.7367 |
62
- | 0.1242 | 5.0 | 5550 | 1.3035 | 0.7314 | 0.7396 | 0.7101 | 0.7716 |
63
- | 0.0866 | 6.0 | 6660 | 1.6628 | 0.7272 | 0.7110 | 0.7464 | 0.6788 |
64
- | 0.0493 | 7.0 | 7770 | 1.7728 | 0.7321 | 0.7285 | 0.7297 | 0.7274 |
65
- | 0.0313 | 8.0 | 8880 | 2.0279 | 0.7383 | 0.7325 | 0.7402 | 0.7249 |
66
- | 0.0187 | 9.0 | 9990 | 2.1956 | 0.7375 | 0.7445 | 0.7173 | 0.7739 |
67
- | 0.0148 | 10.0 | 11100 | 2.2491 | 0.7355 | 0.7366 | 0.7256 | 0.7479 |
68
- | 0.0129 | 11.0 | 12210 | 2.2694 | 0.7350 | 0.7378 | 0.7220 | 0.7543 |
69
 
70
 
71
  ### Framework versions
 
1
  ---
2
+ base_model: allenai/scibert_scivocab_uncased
3
  tags:
4
  - generated_from_trainer
5
  metrics:
 
17
 
18
  # patentClassfication2
19
 
20
+ This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.6329
23
+ - Accuracy: 0.6513
24
+ - F1: 0.6099
25
+ - Precision: 0.6941
26
+ - Recall: 0.5438
27
 
28
  ## Model description
29
 
 
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
+ - learning_rate: 2.54241e-05
46
+ - train_batch_size: 8
47
  - eval_batch_size: 8
48
+ - seed: 41
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: cosine
51
  - lr_scheduler_warmup_ratio: 0.1
52
+ - lr_scheduler_warmup_steps: 24
53
+ - num_epochs: 3
54
 
55
  ### Training results
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
58
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
59
+ | 0.635 | 1.0 | 4438 | 0.6329 | 0.6513 | 0.6099 | 0.6941 | 0.5438 |
60
+ | 0.5772 | 2.0 | 8876 | 0.6393 | 0.6721 | 0.6831 | 0.6624 | 0.7050 |
61
+ | 0.5355 | 3.0 | 13314 | 0.6558 | 0.6683 | 0.6768 | 0.6613 | 0.6931 |
 
 
 
 
 
 
 
 
62
 
63
 
64
  ### Framework versions