eclec commited on
Commit
ee9e21c
1 Parent(s): e25e90e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: allenai/scibert_scivocab_uncased
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: patentClassfication3
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # patentClassfication3
16
+
17
+ This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5828
20
+ - Accuracy: 0.6901
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2.51444e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 61
43
+ - gradient_accumulation_steps: 8
44
+ - total_train_batch_size: 64
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: cosine
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - lr_scheduler_warmup_steps: 240
49
+ - num_epochs: 2
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 0.6511 | 1.0 | 554 | 0.6841 | 0.6125 |
56
+ | 0.5721 | 2.0 | 1108 | 0.5828 | 0.6901 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.31.0
62
+ - Pytorch 2.0.0
63
+ - Datasets 2.14.4
64
+ - Tokenizers 0.13.3