File size: 1,180 Bytes
5945eb1
8b5f4f9
 
 
5945eb1
 
8b5f4f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5945eb1
8b5f4f9
 
 
19ac849
8b5f4f9
19ac849
 
8b5f4f9
 
 
 
 
19ac849
57d6540
19ac849
a8aa362
19ac849
8b5f4f9
 
 
 
 
19ac849
8b5f4f9
19ac849
8b5f4f9
19ac849
8b5f4f9
 
 
 
 
19ac849
8b5f4f9
 
 
19ac849
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
language: en
license: mit
library_name: timm
tags:
- image-classification
- resnet18
- cifar100
datasets: cifar100
metrics:
- accuracy
model-index:
- name: resnet18_cifar100
  results:
  - task:
      type: image-classification
    dataset:
      name: CIFAR-100
      type: cifar100
    metrics:
    - type: accuracy
      value: 0.7843
---

# Model Card for Model ID

This model is a small resnet18 trained on cifar100. It achieves the following results on the evaluation set: Accuracy: 0.7843.

- **Developed by:** Eduardo Dadalto
- **License:** MIT

## How to Get Started with the Model

Use the code below to get started with the model.

```python
import detectors
import timm
model = timm.create_model("resnet18_cifar100", pretrained=True)
```

## Training Data

<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

Training data is cifar100.

## Training Hyperparameters

## Evaluation

### Testing Data

<!-- This should link to a Data Card if possible. -->

Testing data is cifar100.

## Results

Accuracy is 0.7843.