File size: 1,335 Bytes
5945eb1 8b5f4f9 5945eb1 8b5f4f9 478b527 5945eb1 8b5f4f9 2964102 8b5f4f9 478b527 19ac849 8b5f4f9 19ac849 57d6540 19ac849 2964102 a8aa362 19ac849 8b5f4f9 19ac849 8b5f4f9 19ac849 8b5f4f9 8933a1a 8b5f4f9 8933a1a 8b5f4f9 8933a1a 2964102 478b527 2964102 478b527 2964102 8933a1a 2964102 8933a1a 2964102 8933a1a 2964102 8933a1a 8b5f4f9 8933a1a 2964102 8933a1a 2964102 8933a1a 2964102 8933a1a 2964102 478b527 2964102 8933a1a 2964102 8b5f4f9 b566d9f 2964102 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language: en
license: mit
library_name: timm
tags:
- image-classification
- resnet18
- cifar100
datasets: cifar100
metrics:
- accuracy
model-index:
- name: resnet18_cifar100
results:
- task:
type: image-classification
dataset:
name: CIFAR-100
type: cifar100
metrics:
- type: accuracy
value: 0.7926
---
# Model Card for Model ID
This model is a small resnet18 trained on cifar100.
- **Test Accuracy:** 0.7926
- **License:** MIT
## How to Get Started with the Model
Use the code below to get started with the model.
```python
import detectors
import timm
model = timm.create_model("resnet18_cifar100", pretrained=True)
```
## Training Data
Training data is cifar100.
## Training Hyperparameters
- **config**: `scripts/train_configs/cifar100.json`
- **model**: `resnet18_cifar100`
- **dataset**: `cifar100`
- **batch_size**: `128`
- **epochs**: `300`
- **validation_frequency**: `5`
- **seed**: `1`
- **criterion**: `CrossEntropyLoss`
- **criterion_kwargs**: `{}`
- **optimizer**: `SGD`
- **lr**: `0.1`
- **optimizer_kwargs**: `{'momentum': 0.9, 'weight_decay': 0.0005}`
- **scheduler**: `CosineAnnealingLR`
- **scheduler_kwargs**: `{'T_max': 280}`
- **debug**: `False`
## Testing Data
Testing data is cifar100.
---
This model card was created by Eduardo Dadalto. |