File size: 15,553 Bytes
7978894 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
"""
The MIT License (MIT) Copyright (c) 2020 Andrej Karpathy
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
"""
GPT model:
- the initial stem consists of a combination of token encoding and a positional encoding
- the meat of it is a uniform sequence of Transformer blocks
- each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block
- all blocks feed into a central residual pathway similar to resnets
- the final decoder is a linear projection into a vanilla Softmax classifier
"""
import math
import logging
import torch
import torch.nn as nn
from torch.nn import functional as F
logger = logging.getLogger(__name__)
import numpy as np
class GELU(nn.Module):
def forward(self, input):
return F.gelu(input)
class GPTConfig:
""" base GPT config, params common to all GPT versions """
embd_pdrop = 0.1
resid_pdrop = 0.1
attn_pdrop = 0.1
def __init__(self, vocab_size, block_size, **kwargs):
self.vocab_size = vocab_size
self.block_size = block_size
for k, v in kwargs.items():
setattr(self, k, v)
class GPT1Config(GPTConfig):
""" GPT-1 like network roughly 125M params """
n_layer = 12
n_head = 12
n_embd = 768
class CausalSelfAttention(nn.Module):
"""
A vanilla multi-head masked self-attention layer with a projection at the end.
It is possible to use torch.nn.MultiheadAttention here but I am including an
explicit implementation here to show that there is nothing too scary here.
"""
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads
self.key = nn.Linear(config.n_embd, config.n_embd)
self.query = nn.Linear(config.n_embd, config.n_embd)
self.value = nn.Linear(config.n_embd, config.n_embd)
# regularization
self.attn_drop = nn.Dropout(config.attn_pdrop)
self.resid_drop = nn.Dropout(config.resid_pdrop)
# output projection
self.proj = nn.Linear(config.n_embd, config.n_embd)
# causal mask to ensure that attention is only applied to the left in the input sequence
# self.register_buffer("mask", torch.tril(torch.ones(config.block_size, config.block_size))
# .view(1, 1, config.block_size, config.block_size))
self.register_buffer(
"mask",
torch.tril(torch.ones(config.block_size + 1, config.block_size + 1)).view(
1, 1, config.block_size + 1, config.block_size + 1
),
)
self.n_head = config.n_head
def forward(self, x, layer_past=None):
B, T, C = x.size()
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
k = (
self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
) # (B, nh, T, hs)
q = (
self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
) # (B, nh, T, hs)
v = (
self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
) # (B, nh, T, hs)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.mask[:, :, :T, :T] == 0, float("-inf"))
att = F.softmax(att, dim=-1)
att = self.attn_drop(att)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = (
y.transpose(1, 2).contiguous().view(B, T, C)
) # re-assemble all head outputs side by side
# output projection
y = self.resid_drop(self.proj(y))
return y
class Block(nn.Module):
""" an unassuming Transformer block """
def __init__(self, config):
super().__init__()
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.mlp = nn.Sequential(
nn.Linear(config.n_embd, 4 * config.n_embd),
GELU(),
nn.Linear(4 * config.n_embd, config.n_embd),
nn.Dropout(config.resid_pdrop),
)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
class GPT(nn.Module):
""" the full GPT language model, with a context size of block_size """
def __init__(self, config):
super().__init__()
self.config = config
self.model_type = config.model_type
# input embedding stem
self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd)
# self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
self.pos_emb = nn.Parameter(
torch.zeros(1, config.block_size + 1, config.n_embd)
)
self.global_pos_emb = nn.Parameter(
torch.zeros(1, config.max_timestep + 1, config.n_embd)
)
self.drop = nn.Dropout(config.embd_pdrop)
# transformer
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)])
# decoder head
self.ln_f = nn.LayerNorm(config.n_embd)
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.block_size = config.block_size
self.apply(self._init_weights)
logger.info(
"number of parameters: %e", sum(p.numel() for p in self.parameters())
)
self.state_encoder = nn.Sequential(
nn.Conv2d(4, 32, 8, stride=4, padding=0),
nn.ReLU(),
nn.Conv2d(32, 64, 4, stride=2, padding=0),
nn.ReLU(),
nn.Conv2d(64, 64, 3, stride=1, padding=0),
nn.ReLU(),
nn.Flatten(),
nn.Linear(3136, config.n_embd),
nn.Tanh(),
)
self.ret_emb = nn.Sequential(nn.Linear(1, config.n_embd), nn.Tanh())
self.action_embeddings = nn.Sequential(
nn.Embedding(config.vocab_size, config.n_embd), nn.Tanh()
)
nn.init.normal_(self.action_embeddings[0].weight, mean=0.0, std=0.02)
def get_block_size(self):
return self.block_size
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def configure_optimizers(self, train_config):
"""
This long function is unfortunately doing something very simple and is being very defensive:
We are separating out all parameters of the model into two buckets: those that will experience
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
We are then returning the PyTorch optimizer object.
"""
# separate out all parameters to those that will and won't experience regularizing weight decay
decay = set()
no_decay = set()
# whitelist_weight_modules = (torch.nn.Linear, )
whitelist_weight_modules = (torch.nn.Linear, torch.nn.Conv2d)
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in self.named_modules():
for pn, p in m.named_parameters():
fpn = "%s.%s" % (mn, pn) if mn else pn # full param name
if pn.endswith("bias"):
# all biases will not be decayed
no_decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
no_decay.add(fpn)
# special case the position embedding parameter in the root GPT module as not decayed
no_decay.add("pos_emb")
no_decay.add("global_pos_emb")
# validate that we considered every parameter
param_dict = {pn: p for pn, p in self.named_parameters()}
inter_params = decay & no_decay
union_params = decay | no_decay
assert (
len(inter_params) == 0
), "parameters %s made it into both decay/no_decay sets!" % (str(inter_params),)
assert len(param_dict.keys() - union_params) == 0, (
"parameters %s were not separated into either decay/no_decay set!"
% (str(param_dict.keys() - union_params),)
)
# create the pytorch optimizer object
optim_groups = [
{
"params": [param_dict[pn] for pn in sorted(list(decay))],
"weight_decay": train_config.weight_decay,
},
{
"params": [param_dict[pn] for pn in sorted(list(no_decay))],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(
optim_groups, lr=train_config.learning_rate, betas=train_config.betas
)
return optimizer
# state, action, and return
def forward(self, states, actions, targets=None, rtgs=None, timesteps=None):
# states: (batch, block_size, 4*84*84)
# actions: (batch, block_size, 1)
# targets: (batch, block_size, 1)
# rtgs: (batch, block_size, 1)
# timesteps: (batch, 1, 1)
state_embeddings = self.state_encoder(
states.reshape(-1, 4, 84, 84).type(torch.float32).contiguous()
) # (batch * block_size, n_embd)
state_embeddings = state_embeddings.reshape(
states.shape[0], states.shape[1], self.config.n_embd
) # (batch, block_size, n_embd)
if actions is not None and self.model_type == "reward_conditioned":
rtg_embeddings = self.ret_emb(rtgs.type(torch.float32))
action_embeddings = self.action_embeddings(
actions.type(torch.long).squeeze(-1)
) # (batch, block_size, n_embd)
token_embeddings = torch.zeros(
(
states.shape[0],
states.shape[1] * 3 - int(targets is None),
self.config.n_embd,
),
dtype=torch.float32,
device=state_embeddings.device,
)
token_embeddings[:, ::3, :] = rtg_embeddings
token_embeddings[:, 1::3, :] = state_embeddings
token_embeddings[:, 2::3, :] = action_embeddings[
:, -states.shape[1] + int(targets is None) :, :
]
elif (
actions is None and self.model_type == "reward_conditioned"
): # only happens at very first timestep of evaluation
rtg_embeddings = self.ret_emb(rtgs.type(torch.float32))
token_embeddings = torch.zeros(
(states.shape[0], states.shape[1] * 2, self.config.n_embd),
dtype=torch.float32,
device=state_embeddings.device,
)
token_embeddings[:, ::2, :] = rtg_embeddings # really just [:,0,:]
token_embeddings[:, 1::2, :] = state_embeddings # really just [:,1,:]
elif actions is not None and self.model_type == "naive":
action_embeddings = self.action_embeddings(
actions.type(torch.long).squeeze(-1)
) # (batch, block_size, n_embd)
token_embeddings = torch.zeros(
(
states.shape[0],
states.shape[1] * 2 - int(targets is None),
self.config.n_embd,
),
dtype=torch.float32,
device=state_embeddings.device,
)
token_embeddings[:, ::2, :] = state_embeddings
token_embeddings[:, 1::2, :] = action_embeddings[
:, -states.shape[1] + int(targets is None) :, :
]
elif (
actions is None and self.model_type == "naive"
): # only happens at very first timestep of evaluation
token_embeddings = state_embeddings
else:
raise NotImplementedError()
batch_size = states.shape[0]
all_global_pos_emb = torch.repeat_interleave(
self.global_pos_emb, batch_size, dim=0
) # batch_size, traj_length, n_embd
position_embeddings = (
torch.gather(
all_global_pos_emb,
1,
torch.repeat_interleave(timesteps, self.config.n_embd, dim=-1),
)
+ self.pos_emb[:, : token_embeddings.shape[1], :]
)
x = self.drop(token_embeddings + position_embeddings)
x = self.blocks(x)
x = self.ln_f(x)
logits = self.head(x)
if actions is not None and self.model_type == "reward_conditioned":
logits = logits[:, 1::3, :] # only keep predictions from state_embeddings
elif actions is None and self.model_type == "reward_conditioned":
logits = logits[:, 1:, :]
elif actions is not None and self.model_type == "naive":
logits = logits[:, ::2, :] # only keep predictions from state_embeddings
elif actions is None and self.model_type == "naive":
logits = logits # for completeness
else:
raise NotImplementedError()
# if we are given some desired targets also calculate the loss
loss = None
if targets is not None:
loss = F.cross_entropy(
logits.reshape(-1, logits.size(-1)), targets.reshape(-1)
)
return logits, loss
if __name__ == "__main__":
vocab_size = 4
block_size = 90
model_type = "reward_conditioned"
timesteps = 2654
mconf = GPTConfig(
vocab_size,
block_size,
n_layer=6,
n_head=8,
n_embd=128,
model_type=model_type,
max_timestep=timesteps,
)
model = GPT(mconf)
checkpoint_path = "checkpoints/Breakout_123.pth" # or Pong, Qbert, Seaquest
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint)
|