eddyyeo commited on
Commit
e97675a
1 Parent(s): 9939351

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.21 +/- 0.17
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8a918ddecd24d8b895217f59de034f61e69a004aed122df26720fac52b34bd5
3
+ size 106832
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bc7cbe3c700>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7bc7cc027200>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1696110556190702373,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcYuFPlzI4zt7EuQ+b3O2v/Jhvr9Muy8/nEoUwPCYfz82T/C/F8cewLu4Er9q0K8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGK1cv/+t571sTMc/EFdIv5Vqw780FrQ/h/+7v8Cjyz5H6l6/4lO5vwdHfD2Z0XU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABxi4U+XMjjO3sS5D426vE+i8dnO4LwwT5vc7a/8mG+v0y7Lz9UDkW/dfWJvzGB1D+cShTA8Jh/PzZP8L886RPAKRe5Pov1F74Xxx7Au7gSv2rQrz+nzwHADWGnv/Q+WL+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.26082948 0.00695137 0.4454535 ]\n [-1.4253978 -1.487364 0.6864517 ]\n [-2.3170538 0.9984274 -1.8774173 ]\n [-2.4809015 -0.57313126 1.3735478 ]]",
34
+ "desired_goal": "[[-0.8620162 -0.11312484 1.5570197 ]\n [-0.78257847 -1.5266901 1.4069276 ]\n [-1.4687356 0.3977337 -0.8707623 ]\n [-1.4478724 0.06159117 0.96022946]]",
35
+ "observation": "[[ 0.26082948 0.00695137 0.4454535 0.47249 0.00353667 0.37878805]\n [-1.4253978 -1.487364 0.6864517 -0.7697499 -1.0778033 1.6601926 ]\n [-2.3170538 0.9984274 -1.8774173 -2.3111105 0.36150482 -0.14839761]\n [-2.4809015 -0.57313126 1.3735478 -2.028299 -1.3076493 -0.8447106 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW++5PB7kj73C2A8+4KOVvQxUuT2vs3Y+6u1QPFmSCj5NYPw9N6bYu5L4DL7aGLw8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.02269714 -0.07025932 0.1404753 ]\n [-0.07306647 0.09049234 0.24091981]\n [ 0.01275204 0.1353239 0.12323055]\n [-0.00661161 -0.13766697 0.02296107]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9kWXTmW+oOMAWyUSwSMAXSUR0ClOTOez2OAdX2UKGgGR7/TvGp++dsjaAdLA2gIR0ClOZUkfLcLdX2UKGgGR7/HYao/A0sOaAdLA2gIR0ClOWiL2pQ2dX2UKGgGR7/NU70WdmQKaAdLA2gIR0ClOQDhcZ+AdX2UKGgGR7/YOxSpBHCoaAdLBGgIR0ClOUbiZOSGdX2UKGgGR7/KpxWDHwPRaAdLA2gIR0ClOaQ0fozOdX2UKGgGR7/IiL2pQ1rJaAdLA2gIR0ClOXeqrBCVdX2UKGgGR7+8OqebutwKaAdLAmgIR0ClOU86mwaBdX2UKGgGR7/T8vmHP/rCaAdLBGgIR0ClORPl2eQNdX2UKGgGR7/ADeTFERapaAdLAmgIR0ClOX/gBLf2dX2UKGgGR7+l5OafBeolaAdLAWgIR0ClOVOwosqbdX2UKGgGR7/GaqCHymQ9aAdLA2gIR0ClObQ/xDsudX2UKGgGR7+09RrJr+HaaAdLAmgIR0ClOR+Zof0VdX2UKGgGR7/LdIoVmBe5aAdLA2gIR0ClOY8/dIoWdX2UKGgGR7/UWLP2PDHfaAdLA2gIR0ClOcBvaURndX2UKGgGR7+JWzWwu/UOaAdLAWgIR0ClOZOoHcDbdX2UKGgGR7/LpUxVQyh0aAdLA2gIR0ClOSwfQrtmdX2UKGgGR7/Ypg1FYuCgaAdLBWgIR0ClOWu3trsTdX2UKGgGR7+57gKneiztaAdLAmgIR0ClOc1bA1vVdX2UKGgGR7/DSbYsd1dPaAdLAmgIR0ClOaFgDzRQdX2UKGgGR7+SG34Kx9ofaAdLAWgIR0ClOXW7FsHjdX2UKGgGR7/M4axX4j8laAdLA2gIR0ClOT6Jyhi9dX2UKGgGR7+/Dcdo371qaAdLAmgIR0ClOaqJl8PXdX2UKGgGR7/UUWVNYbKiaAdLA2gIR0ClOdufukULdX2UKGgGR7/MEnssxwhoaAdLA2gIR0ClOYKqfe1sdX2UKGgGR7/UK7qY7aIvaAdLA2gIR0ClOUrmhdt3dX2UKGgGR7+/BN21UlzEaAdLAmgIR0ClOeXZPEbYdX2UKGgGR7/QeMyad+XraAdLA2gIR0ClObkvsZ5zdX2UKGgGR7/AMS9M9KVZaAdLAmgIR0ClOY0iY9gXdX2UKGgGR7+m0u14Pf8/aAdLAWgIR0ClOesIVuaXdX2UKGgGR7/BJwsGxD9gaAdLAmgIR0ClOVcIJJGwdX2UKGgGR7+70K7ZnL7oaAdLAmgIR0ClOZc1Gb1AdX2UKGgGR7+SQtBfKISEaAdLAWgIR0ClOVv07KaHdX2UKGgGR7/ONfgJkXk6aAdLA2gIR0ClOckEcKgJdX2UKGgGR7/LeHBUJfICaAdLA2gIR0ClOfsSCe3AdX2UKGgGR7+1S75Ec81XaAdLAmgIR0ClOaIuoP07dX2UKGgGR7/EbBGhEjPfaAdLA2gIR0ClOWz7EYO2dX2UKGgGR7+7VnVXmvGIaAdLAmgIR0ClOgW1MM7VdX2UKGgGR7/Sr+o99tuUaAdLA2gIR0ClOdkHt4RmdX2UKGgGR7+nkT6BRQ7+aAdLAWgIR0ClOXF+Vkc0dX2UKGgGR7/SEw35vcagaAdLA2gIR0ClObDwpe/pdX2UKGgGR7+3Tvy9VWCFaAdLAmgIR0ClOeEXk5p8dX2UKGgGR7/B51Ng0CRwaAdLAmgIR0ClOXmgBcRldX2UKGgGR7/Zr56+nIhhaAdLBGgIR0ClOhjqOcUedX2UKGgGR7/MA0bcXWOIaAdLA2gIR0ClOcAyVObidX2UKGgGR7+pCtzS1E3LaAdLAWgIR0ClOcTo+wC9dX2UKGgGR7/EWKMvRJEqaAdLAmgIR0ClOiJeNT99dX2UKGgGR7/S1RtP557gaAdLBGgIR0ClOfXkxREXdX2UKGgGR7/cejEehf0FaAdLBGgIR0ClOY5U1hsqdX2UKGgGR7/Q+X7cfvF4aAdLA2gIR0ClOdI2fkFOdX2UKGgGR7/J/jKgZjx1aAdLA2gIR0ClOjIRh+fAdX2UKGgGR7/WXcQAdXDFaAdLA2gIR0ClOgVymygPdX2UKGgGR7/ENaQmu1WsaAdLA2gIR0ClOZ384xUOdX2UKGgGR7+7dcjZ+QU6aAdLAmgIR0ClOg2om5UcdX2UKGgGR7/QiADq4YrKaAdLA2gIR0ClOeGICU5ddX2UKGgGR7+2bCrLhaTwaAdLAmgIR0ClOaZgw482dX2UKGgGR7/RkS26TW5IaAdLA2gIR0ClOj9CVryldX2UKGgGR7+2t9x6v7m/aAdLAmgIR0ClOems3hn8dX2UKGgGR7+0HMUypJf6aAdLAmgIR0ClOkkj5bhWdX2UKGgGR7/Mkona37UHaAdLA2gIR0ClObS8SPELdX2UKGgGR7/QW/ag2606aAdLBGgIR0ClOiD2rXDndX2UKGgGR7/C4MnZ00WNaAdLAmgIR0ClOfTPjXFtdX2UKGgGR7/DtYSxqwhXaAdLAmgIR0ClOlIbGWD6dX2UKGgGR7/CP3i704BFaAdLAmgIR0ClOb3cpLEldX2UKGgGR7+Sy6cy31BdaAdLAWgIR0ClOlbW3BpIdX2UKGgGR7/QRcNYr8R+aAdLA2gIR0ClOgJgkTpQdX2UKGgGR7/WauwHJLdvaAdLBGgIR0ClOjWRA8jidX2UKGgGR7/SKiwjdHlPaAdLA2gIR0ClOmcUdq+KdX2UKGgGR7+0vmHP/rB1aAdLAmgIR0ClOg4hdMTOdX2UKGgGR7/XeOn2qT8paAdLBGgIR0ClOdMBIWgwdX2UKGgGR7/CP8yeqaPTaAdLAmgIR0ClOhbdi2DydX2UKGgGR7/Nai9IwudxaAdLA2gIR0ClOnSRB/qgdX2UKGgGR7/V8Jlar3j/aAdLBGgIR0ClOkf/FR51dX2UKGgGR7/Rg6EJ0GNaaAdLA2gIR0ClOeCOFQEZdX2UKGgGR7/VAwPAfuCxaAdLA2gIR0ClOibW/ag3dX2UKGgGR7/USSeRPoFFaAdLA2gIR0ClOoRtP558dX2UKGgGR7/NCY1He7+UaAdLA2gIR0ClOfArH2h7dX2UKGgGR7/ZHu7YkE9uaAdLBGgIR0ClOlw4sEq2dX2UKGgGR7/Tq94/u9eyaAdLA2gIR0ClOjS0rsjWdX2UKGgGR7/KS/0ulGgBaAdLA2gIR0ClOpSiVSn+dX2UKGgGR7/LU2kzoEB9aAdLA2gIR0ClOgCzsyBTdX2UKGgGR7/Dhl18stkGaAdLAmgIR0ClOkCkfs/qdX2UKGgGR7+y24NI9TxYaAdLAmgIR0ClOp36Q/5ddX2UKGgGR7/azRQaaTfSaAdLBGgIR0ClOnFO45LidX2UKGgGR7/LnSOR1X/6aAdLA2gIR0ClOg33xnWbdX2UKGgGR7+yVbA1vVEvaAdLAmgIR0ClOqbgjyFxdX2UKGgGR7/MIomXw9aEaAdLA2gIR0ClOk3r+o9+dX2UKGgGR7/bHpbD/EOzaAdLBGgIR0ClOoWLpA2RdX2UKGgGR7/KKyfL9uP4aAdLA2gIR0ClOh5DiOvMdX2UKGgGR7/KaS9ugpSaaAdLA2gIR0ClOrdiDujRdX2UKGgGR7/SuUD+zdDZaAdLA2gIR0ClOl6QV9F4dX2UKGgGR7/CdlNDc/MXaAdLAmgIR0ClOo8XN1QqdX2UKGgGR7/IIeHSF49paAdLA2gIR0ClOsZn+Q2ddX2UKGgGR7/JhfjS5RTCaAdLA2gIR0ClOm1vuPV/dX2UKGgGR7/VysS00FbFaAdLBGgIR0ClOjIgeRxMdX2UKGgGR7/JXsgMc6vJaAdLA2gIR0ClOp4gJTl1dX2UKGgGR7+V+Vkc0cfeaAdLAWgIR0ClOnH58BuGdX2UKGgGR7+/MibDuSfUaAdLAmgIR0ClOs+ee4CqdX2UKGgGR7+clsxfv4M4aAdLAWgIR0ClOqLxZuAJdX2UKGgGR7/AHWSU1Q67aAdLAmgIR0ClOtg5imVJdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce051da57f36a36237497c669e8926444687918b3a9a45d833d7bb4664c42f50
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dfdec8fd74d715f70a4d15638f579410d0afb4b1abc307da70fd439ea49ceb5
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bc7cbe3c700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bc7cc027200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696110556190702373, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcYuFPlzI4zt7EuQ+b3O2v/Jhvr9Muy8/nEoUwPCYfz82T/C/F8cewLu4Er9q0K8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGK1cv/+t571sTMc/EFdIv5Vqw780FrQ/h/+7v8Cjyz5H6l6/4lO5vwdHfD2Z0XU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABxi4U+XMjjO3sS5D426vE+i8dnO4LwwT5vc7a/8mG+v0y7Lz9UDkW/dfWJvzGB1D+cShTA8Jh/PzZP8L886RPAKRe5Pov1F74Xxx7Au7gSv2rQrz+nzwHADWGnv/Q+WL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.26082948 0.00695137 0.4454535 ]\n [-1.4253978 -1.487364 0.6864517 ]\n [-2.3170538 0.9984274 -1.8774173 ]\n [-2.4809015 -0.57313126 1.3735478 ]]", "desired_goal": "[[-0.8620162 -0.11312484 1.5570197 ]\n [-0.78257847 -1.5266901 1.4069276 ]\n [-1.4687356 0.3977337 -0.8707623 ]\n [-1.4478724 0.06159117 0.96022946]]", "observation": "[[ 0.26082948 0.00695137 0.4454535 0.47249 0.00353667 0.37878805]\n [-1.4253978 -1.487364 0.6864517 -0.7697499 -1.0778033 1.6601926 ]\n [-2.3170538 0.9984274 -1.8774173 -2.3111105 0.36150482 -0.14839761]\n [-2.4809015 -0.57313126 1.3735478 -2.028299 -1.3076493 -0.8447106 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW++5PB7kj73C2A8+4KOVvQxUuT2vs3Y+6u1QPFmSCj5NYPw9N6bYu5L4DL7aGLw8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02269714 -0.07025932 0.1404753 ]\n [-0.07306647 0.09049234 0.24091981]\n [ 0.01275204 0.1353239 0.12323055]\n [-0.00661161 -0.13766697 0.02296107]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9kWXTmW+oOMAWyUSwSMAXSUR0ClOTOez2OAdX2UKGgGR7/TvGp++dsjaAdLA2gIR0ClOZUkfLcLdX2UKGgGR7/HYao/A0sOaAdLA2gIR0ClOWiL2pQ2dX2UKGgGR7/NU70WdmQKaAdLA2gIR0ClOQDhcZ+AdX2UKGgGR7/YOxSpBHCoaAdLBGgIR0ClOUbiZOSGdX2UKGgGR7/KpxWDHwPRaAdLA2gIR0ClOaQ0fozOdX2UKGgGR7/IiL2pQ1rJaAdLA2gIR0ClOXeqrBCVdX2UKGgGR7+8OqebutwKaAdLAmgIR0ClOU86mwaBdX2UKGgGR7/T8vmHP/rCaAdLBGgIR0ClORPl2eQNdX2UKGgGR7/ADeTFERapaAdLAmgIR0ClOX/gBLf2dX2UKGgGR7+l5OafBeolaAdLAWgIR0ClOVOwosqbdX2UKGgGR7/GaqCHymQ9aAdLA2gIR0ClObQ/xDsudX2UKGgGR7+09RrJr+HaaAdLAmgIR0ClOR+Zof0VdX2UKGgGR7/LdIoVmBe5aAdLA2gIR0ClOY8/dIoWdX2UKGgGR7/UWLP2PDHfaAdLA2gIR0ClOcBvaURndX2UKGgGR7+JWzWwu/UOaAdLAWgIR0ClOZOoHcDbdX2UKGgGR7/LpUxVQyh0aAdLA2gIR0ClOSwfQrtmdX2UKGgGR7/Ypg1FYuCgaAdLBWgIR0ClOWu3trsTdX2UKGgGR7+57gKneiztaAdLAmgIR0ClOc1bA1vVdX2UKGgGR7/DSbYsd1dPaAdLAmgIR0ClOaFgDzRQdX2UKGgGR7+SG34Kx9ofaAdLAWgIR0ClOXW7FsHjdX2UKGgGR7/M4axX4j8laAdLA2gIR0ClOT6Jyhi9dX2UKGgGR7+/Dcdo371qaAdLAmgIR0ClOaqJl8PXdX2UKGgGR7/UUWVNYbKiaAdLA2gIR0ClOdufukULdX2UKGgGR7/MEnssxwhoaAdLA2gIR0ClOYKqfe1sdX2UKGgGR7/UK7qY7aIvaAdLA2gIR0ClOUrmhdt3dX2UKGgGR7+/BN21UlzEaAdLAmgIR0ClOeXZPEbYdX2UKGgGR7/QeMyad+XraAdLA2gIR0ClObkvsZ5zdX2UKGgGR7/AMS9M9KVZaAdLAmgIR0ClOY0iY9gXdX2UKGgGR7+m0u14Pf8/aAdLAWgIR0ClOesIVuaXdX2UKGgGR7/BJwsGxD9gaAdLAmgIR0ClOVcIJJGwdX2UKGgGR7+70K7ZnL7oaAdLAmgIR0ClOZc1Gb1AdX2UKGgGR7+SQtBfKISEaAdLAWgIR0ClOVv07KaHdX2UKGgGR7/ONfgJkXk6aAdLA2gIR0ClOckEcKgJdX2UKGgGR7/LeHBUJfICaAdLA2gIR0ClOfsSCe3AdX2UKGgGR7+1S75Ec81XaAdLAmgIR0ClOaIuoP07dX2UKGgGR7/EbBGhEjPfaAdLA2gIR0ClOWz7EYO2dX2UKGgGR7+7VnVXmvGIaAdLAmgIR0ClOgW1MM7VdX2UKGgGR7/Sr+o99tuUaAdLA2gIR0ClOdkHt4RmdX2UKGgGR7+nkT6BRQ7+aAdLAWgIR0ClOXF+Vkc0dX2UKGgGR7/SEw35vcagaAdLA2gIR0ClObDwpe/pdX2UKGgGR7+3Tvy9VWCFaAdLAmgIR0ClOeEXk5p8dX2UKGgGR7/B51Ng0CRwaAdLAmgIR0ClOXmgBcRldX2UKGgGR7/Zr56+nIhhaAdLBGgIR0ClOhjqOcUedX2UKGgGR7/MA0bcXWOIaAdLA2gIR0ClOcAyVObidX2UKGgGR7+pCtzS1E3LaAdLAWgIR0ClOcTo+wC9dX2UKGgGR7/EWKMvRJEqaAdLAmgIR0ClOiJeNT99dX2UKGgGR7/S1RtP557gaAdLBGgIR0ClOfXkxREXdX2UKGgGR7/cejEehf0FaAdLBGgIR0ClOY5U1hsqdX2UKGgGR7/Q+X7cfvF4aAdLA2gIR0ClOdI2fkFOdX2UKGgGR7/J/jKgZjx1aAdLA2gIR0ClOjIRh+fAdX2UKGgGR7/WXcQAdXDFaAdLA2gIR0ClOgVymygPdX2UKGgGR7/ENaQmu1WsaAdLA2gIR0ClOZ384xUOdX2UKGgGR7+7dcjZ+QU6aAdLAmgIR0ClOg2om5UcdX2UKGgGR7/QiADq4YrKaAdLA2gIR0ClOeGICU5ddX2UKGgGR7+2bCrLhaTwaAdLAmgIR0ClOaZgw482dX2UKGgGR7/RkS26TW5IaAdLA2gIR0ClOj9CVryldX2UKGgGR7+2t9x6v7m/aAdLAmgIR0ClOems3hn8dX2UKGgGR7+0HMUypJf6aAdLAmgIR0ClOkkj5bhWdX2UKGgGR7/Mkona37UHaAdLA2gIR0ClObS8SPELdX2UKGgGR7/QW/ag2606aAdLBGgIR0ClOiD2rXDndX2UKGgGR7/C4MnZ00WNaAdLAmgIR0ClOfTPjXFtdX2UKGgGR7/DtYSxqwhXaAdLAmgIR0ClOlIbGWD6dX2UKGgGR7/CP3i704BFaAdLAmgIR0ClOb3cpLEldX2UKGgGR7+Sy6cy31BdaAdLAWgIR0ClOlbW3BpIdX2UKGgGR7/QRcNYr8R+aAdLA2gIR0ClOgJgkTpQdX2UKGgGR7/WauwHJLdvaAdLBGgIR0ClOjWRA8jidX2UKGgGR7/SKiwjdHlPaAdLA2gIR0ClOmcUdq+KdX2UKGgGR7+0vmHP/rB1aAdLAmgIR0ClOg4hdMTOdX2UKGgGR7/XeOn2qT8paAdLBGgIR0ClOdMBIWgwdX2UKGgGR7/CP8yeqaPTaAdLAmgIR0ClOhbdi2DydX2UKGgGR7/Nai9IwudxaAdLA2gIR0ClOnSRB/qgdX2UKGgGR7/V8Jlar3j/aAdLBGgIR0ClOkf/FR51dX2UKGgGR7/Rg6EJ0GNaaAdLA2gIR0ClOeCOFQEZdX2UKGgGR7/VAwPAfuCxaAdLA2gIR0ClOibW/ag3dX2UKGgGR7/USSeRPoFFaAdLA2gIR0ClOoRtP558dX2UKGgGR7/NCY1He7+UaAdLA2gIR0ClOfArH2h7dX2UKGgGR7/ZHu7YkE9uaAdLBGgIR0ClOlw4sEq2dX2UKGgGR7/Tq94/u9eyaAdLA2gIR0ClOjS0rsjWdX2UKGgGR7/KS/0ulGgBaAdLA2gIR0ClOpSiVSn+dX2UKGgGR7/LU2kzoEB9aAdLA2gIR0ClOgCzsyBTdX2UKGgGR7/Dhl18stkGaAdLAmgIR0ClOkCkfs/qdX2UKGgGR7+y24NI9TxYaAdLAmgIR0ClOp36Q/5ddX2UKGgGR7/azRQaaTfSaAdLBGgIR0ClOnFO45LidX2UKGgGR7/LnSOR1X/6aAdLA2gIR0ClOg33xnWbdX2UKGgGR7+yVbA1vVEvaAdLAmgIR0ClOqbgjyFxdX2UKGgGR7/MIomXw9aEaAdLA2gIR0ClOk3r+o9+dX2UKGgGR7/bHpbD/EOzaAdLBGgIR0ClOoWLpA2RdX2UKGgGR7/KKyfL9uP4aAdLA2gIR0ClOh5DiOvMdX2UKGgGR7/KaS9ugpSaaAdLA2gIR0ClOrdiDujRdX2UKGgGR7/SuUD+zdDZaAdLA2gIR0ClOl6QV9F4dX2UKGgGR7/CdlNDc/MXaAdLAmgIR0ClOo8XN1QqdX2UKGgGR7/IIeHSF49paAdLA2gIR0ClOsZn+Q2ddX2UKGgGR7/JhfjS5RTCaAdLA2gIR0ClOm1vuPV/dX2UKGgGR7/VysS00FbFaAdLBGgIR0ClOjIgeRxMdX2UKGgGR7/JXsgMc6vJaAdLA2gIR0ClOp4gJTl1dX2UKGgGR7+V+Vkc0cfeaAdLAWgIR0ClOnH58BuGdX2UKGgGR7+/MibDuSfUaAdLAmgIR0ClOs+ee4CqdX2UKGgGR7+clsxfv4M4aAdLAWgIR0ClOqLxZuAJdX2UKGgGR7/AHWSU1Q67aAdLAmgIR0ClOtg5imVJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (657 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.2110434129834175, "std_reward": 0.16863538736735173, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-30T22:36:08.210084"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf825fa927c2778decee373ee33dff2c0cc61660e5fdd64e9e483f37f9c7a1f4
3
+ size 2629