Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.21 +/- 0.17
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8a918ddecd24d8b895217f59de034f61e69a004aed122df26720fac52b34bd5
|
3 |
+
size 106832
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bc7cbe3c700>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7bc7cc027200>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1696110556190702373,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcYuFPlzI4zt7EuQ+b3O2v/Jhvr9Muy8/nEoUwPCYfz82T/C/F8cewLu4Er9q0K8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGK1cv/+t571sTMc/EFdIv5Vqw780FrQ/h/+7v8Cjyz5H6l6/4lO5vwdHfD2Z0XU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABxi4U+XMjjO3sS5D426vE+i8dnO4LwwT5vc7a/8mG+v0y7Lz9UDkW/dfWJvzGB1D+cShTA8Jh/PzZP8L886RPAKRe5Pov1F74Xxx7Au7gSv2rQrz+nzwHADWGnv/Q+WL+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.26082948 0.00695137 0.4454535 ]\n [-1.4253978 -1.487364 0.6864517 ]\n [-2.3170538 0.9984274 -1.8774173 ]\n [-2.4809015 -0.57313126 1.3735478 ]]",
|
34 |
+
"desired_goal": "[[-0.8620162 -0.11312484 1.5570197 ]\n [-0.78257847 -1.5266901 1.4069276 ]\n [-1.4687356 0.3977337 -0.8707623 ]\n [-1.4478724 0.06159117 0.96022946]]",
|
35 |
+
"observation": "[[ 0.26082948 0.00695137 0.4454535 0.47249 0.00353667 0.37878805]\n [-1.4253978 -1.487364 0.6864517 -0.7697499 -1.0778033 1.6601926 ]\n [-2.3170538 0.9984274 -1.8774173 -2.3111105 0.36150482 -0.14839761]\n [-2.4809015 -0.57313126 1.3735478 -2.028299 -1.3076493 -0.8447106 ]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW++5PB7kj73C2A8+4KOVvQxUuT2vs3Y+6u1QPFmSCj5NYPw9N6bYu5L4DL7aGLw8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 0.02269714 -0.07025932 0.1404753 ]\n [-0.07306647 0.09049234 0.24091981]\n [ 0.01275204 0.1353239 0.12323055]\n [-0.00661161 -0.13766697 0.02296107]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9kWXTmW+oOMAWyUSwSMAXSUR0ClOTOez2OAdX2UKGgGR7/TvGp++dsjaAdLA2gIR0ClOZUkfLcLdX2UKGgGR7/HYao/A0sOaAdLA2gIR0ClOWiL2pQ2dX2UKGgGR7/NU70WdmQKaAdLA2gIR0ClOQDhcZ+AdX2UKGgGR7/YOxSpBHCoaAdLBGgIR0ClOUbiZOSGdX2UKGgGR7/KpxWDHwPRaAdLA2gIR0ClOaQ0fozOdX2UKGgGR7/IiL2pQ1rJaAdLA2gIR0ClOXeqrBCVdX2UKGgGR7+8OqebutwKaAdLAmgIR0ClOU86mwaBdX2UKGgGR7/T8vmHP/rCaAdLBGgIR0ClORPl2eQNdX2UKGgGR7/ADeTFERapaAdLAmgIR0ClOX/gBLf2dX2UKGgGR7+l5OafBeolaAdLAWgIR0ClOVOwosqbdX2UKGgGR7/GaqCHymQ9aAdLA2gIR0ClObQ/xDsudX2UKGgGR7+09RrJr+HaaAdLAmgIR0ClOR+Zof0VdX2UKGgGR7/LdIoVmBe5aAdLA2gIR0ClOY8/dIoWdX2UKGgGR7/UWLP2PDHfaAdLA2gIR0ClOcBvaURndX2UKGgGR7+JWzWwu/UOaAdLAWgIR0ClOZOoHcDbdX2UKGgGR7/LpUxVQyh0aAdLA2gIR0ClOSwfQrtmdX2UKGgGR7/Ypg1FYuCgaAdLBWgIR0ClOWu3trsTdX2UKGgGR7+57gKneiztaAdLAmgIR0ClOc1bA1vVdX2UKGgGR7/DSbYsd1dPaAdLAmgIR0ClOaFgDzRQdX2UKGgGR7+SG34Kx9ofaAdLAWgIR0ClOXW7FsHjdX2UKGgGR7/M4axX4j8laAdLA2gIR0ClOT6Jyhi9dX2UKGgGR7+/Dcdo371qaAdLAmgIR0ClOaqJl8PXdX2UKGgGR7/UUWVNYbKiaAdLA2gIR0ClOdufukULdX2UKGgGR7/MEnssxwhoaAdLA2gIR0ClOYKqfe1sdX2UKGgGR7/UK7qY7aIvaAdLA2gIR0ClOUrmhdt3dX2UKGgGR7+/BN21UlzEaAdLAmgIR0ClOeXZPEbYdX2UKGgGR7/QeMyad+XraAdLA2gIR0ClObkvsZ5zdX2UKGgGR7/AMS9M9KVZaAdLAmgIR0ClOY0iY9gXdX2UKGgGR7+m0u14Pf8/aAdLAWgIR0ClOesIVuaXdX2UKGgGR7/BJwsGxD9gaAdLAmgIR0ClOVcIJJGwdX2UKGgGR7+70K7ZnL7oaAdLAmgIR0ClOZc1Gb1AdX2UKGgGR7+SQtBfKISEaAdLAWgIR0ClOVv07KaHdX2UKGgGR7/ONfgJkXk6aAdLA2gIR0ClOckEcKgJdX2UKGgGR7/LeHBUJfICaAdLA2gIR0ClOfsSCe3AdX2UKGgGR7+1S75Ec81XaAdLAmgIR0ClOaIuoP07dX2UKGgGR7/EbBGhEjPfaAdLA2gIR0ClOWz7EYO2dX2UKGgGR7+7VnVXmvGIaAdLAmgIR0ClOgW1MM7VdX2UKGgGR7/Sr+o99tuUaAdLA2gIR0ClOdkHt4RmdX2UKGgGR7+nkT6BRQ7+aAdLAWgIR0ClOXF+Vkc0dX2UKGgGR7/SEw35vcagaAdLA2gIR0ClObDwpe/pdX2UKGgGR7+3Tvy9VWCFaAdLAmgIR0ClOeEXk5p8dX2UKGgGR7/B51Ng0CRwaAdLAmgIR0ClOXmgBcRldX2UKGgGR7/Zr56+nIhhaAdLBGgIR0ClOhjqOcUedX2UKGgGR7/MA0bcXWOIaAdLA2gIR0ClOcAyVObidX2UKGgGR7+pCtzS1E3LaAdLAWgIR0ClOcTo+wC9dX2UKGgGR7/EWKMvRJEqaAdLAmgIR0ClOiJeNT99dX2UKGgGR7/S1RtP557gaAdLBGgIR0ClOfXkxREXdX2UKGgGR7/cejEehf0FaAdLBGgIR0ClOY5U1hsqdX2UKGgGR7/Q+X7cfvF4aAdLA2gIR0ClOdI2fkFOdX2UKGgGR7/J/jKgZjx1aAdLA2gIR0ClOjIRh+fAdX2UKGgGR7/WXcQAdXDFaAdLA2gIR0ClOgVymygPdX2UKGgGR7/ENaQmu1WsaAdLA2gIR0ClOZ384xUOdX2UKGgGR7+7dcjZ+QU6aAdLAmgIR0ClOg2om5UcdX2UKGgGR7/QiADq4YrKaAdLA2gIR0ClOeGICU5ddX2UKGgGR7+2bCrLhaTwaAdLAmgIR0ClOaZgw482dX2UKGgGR7/RkS26TW5IaAdLA2gIR0ClOj9CVryldX2UKGgGR7+2t9x6v7m/aAdLAmgIR0ClOems3hn8dX2UKGgGR7+0HMUypJf6aAdLAmgIR0ClOkkj5bhWdX2UKGgGR7/Mkona37UHaAdLA2gIR0ClObS8SPELdX2UKGgGR7/QW/ag2606aAdLBGgIR0ClOiD2rXDndX2UKGgGR7/C4MnZ00WNaAdLAmgIR0ClOfTPjXFtdX2UKGgGR7/DtYSxqwhXaAdLAmgIR0ClOlIbGWD6dX2UKGgGR7/CP3i704BFaAdLAmgIR0ClOb3cpLEldX2UKGgGR7+Sy6cy31BdaAdLAWgIR0ClOlbW3BpIdX2UKGgGR7/QRcNYr8R+aAdLA2gIR0ClOgJgkTpQdX2UKGgGR7/WauwHJLdvaAdLBGgIR0ClOjWRA8jidX2UKGgGR7/SKiwjdHlPaAdLA2gIR0ClOmcUdq+KdX2UKGgGR7+0vmHP/rB1aAdLAmgIR0ClOg4hdMTOdX2UKGgGR7/XeOn2qT8paAdLBGgIR0ClOdMBIWgwdX2UKGgGR7/CP8yeqaPTaAdLAmgIR0ClOhbdi2DydX2UKGgGR7/Nai9IwudxaAdLA2gIR0ClOnSRB/qgdX2UKGgGR7/V8Jlar3j/aAdLBGgIR0ClOkf/FR51dX2UKGgGR7/Rg6EJ0GNaaAdLA2gIR0ClOeCOFQEZdX2UKGgGR7/VAwPAfuCxaAdLA2gIR0ClOibW/ag3dX2UKGgGR7/USSeRPoFFaAdLA2gIR0ClOoRtP558dX2UKGgGR7/NCY1He7+UaAdLA2gIR0ClOfArH2h7dX2UKGgGR7/ZHu7YkE9uaAdLBGgIR0ClOlw4sEq2dX2UKGgGR7/Tq94/u9eyaAdLA2gIR0ClOjS0rsjWdX2UKGgGR7/KS/0ulGgBaAdLA2gIR0ClOpSiVSn+dX2UKGgGR7/LU2kzoEB9aAdLA2gIR0ClOgCzsyBTdX2UKGgGR7/Dhl18stkGaAdLAmgIR0ClOkCkfs/qdX2UKGgGR7+y24NI9TxYaAdLAmgIR0ClOp36Q/5ddX2UKGgGR7/azRQaaTfSaAdLBGgIR0ClOnFO45LidX2UKGgGR7/LnSOR1X/6aAdLA2gIR0ClOg33xnWbdX2UKGgGR7+yVbA1vVEvaAdLAmgIR0ClOqbgjyFxdX2UKGgGR7/MIomXw9aEaAdLA2gIR0ClOk3r+o9+dX2UKGgGR7/bHpbD/EOzaAdLBGgIR0ClOoWLpA2RdX2UKGgGR7/KKyfL9uP4aAdLA2gIR0ClOh5DiOvMdX2UKGgGR7/KaS9ugpSaaAdLA2gIR0ClOrdiDujRdX2UKGgGR7/SuUD+zdDZaAdLA2gIR0ClOl6QV9F4dX2UKGgGR7/CdlNDc/MXaAdLAmgIR0ClOo8XN1QqdX2UKGgGR7/IIeHSF49paAdLA2gIR0ClOsZn+Q2ddX2UKGgGR7/JhfjS5RTCaAdLA2gIR0ClOm1vuPV/dX2UKGgGR7/VysS00FbFaAdLBGgIR0ClOjIgeRxMdX2UKGgGR7/JXsgMc6vJaAdLA2gIR0ClOp4gJTl1dX2UKGgGR7+V+Vkc0cfeaAdLAWgIR0ClOnH58BuGdX2UKGgGR7+/MibDuSfUaAdLAmgIR0ClOs+ee4CqdX2UKGgGR7+clsxfv4M4aAdLAWgIR0ClOqLxZuAJdX2UKGgGR7/AHWSU1Q67aAdLAmgIR0ClOtg5imVJdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce051da57f36a36237497c669e8926444687918b3a9a45d833d7bb4664c42f50
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dfdec8fd74d715f70a4d15638f579410d0afb4b1abc307da70fd439ea49ceb5
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bc7cbe3c700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bc7cc027200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696110556190702373, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcYuFPlzI4zt7EuQ+b3O2v/Jhvr9Muy8/nEoUwPCYfz82T/C/F8cewLu4Er9q0K8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGK1cv/+t571sTMc/EFdIv5Vqw780FrQ/h/+7v8Cjyz5H6l6/4lO5vwdHfD2Z0XU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABxi4U+XMjjO3sS5D426vE+i8dnO4LwwT5vc7a/8mG+v0y7Lz9UDkW/dfWJvzGB1D+cShTA8Jh/PzZP8L886RPAKRe5Pov1F74Xxx7Au7gSv2rQrz+nzwHADWGnv/Q+WL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.26082948 0.00695137 0.4454535 ]\n [-1.4253978 -1.487364 0.6864517 ]\n [-2.3170538 0.9984274 -1.8774173 ]\n [-2.4809015 -0.57313126 1.3735478 ]]", "desired_goal": "[[-0.8620162 -0.11312484 1.5570197 ]\n [-0.78257847 -1.5266901 1.4069276 ]\n [-1.4687356 0.3977337 -0.8707623 ]\n [-1.4478724 0.06159117 0.96022946]]", "observation": "[[ 0.26082948 0.00695137 0.4454535 0.47249 0.00353667 0.37878805]\n [-1.4253978 -1.487364 0.6864517 -0.7697499 -1.0778033 1.6601926 ]\n [-2.3170538 0.9984274 -1.8774173 -2.3111105 0.36150482 -0.14839761]\n [-2.4809015 -0.57313126 1.3735478 -2.028299 -1.3076493 -0.8447106 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW++5PB7kj73C2A8+4KOVvQxUuT2vs3Y+6u1QPFmSCj5NYPw9N6bYu5L4DL7aGLw8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02269714 -0.07025932 0.1404753 ]\n [-0.07306647 0.09049234 0.24091981]\n [ 0.01275204 0.1353239 0.12323055]\n [-0.00661161 -0.13766697 0.02296107]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9kWXTmW+oOMAWyUSwSMAXSUR0ClOTOez2OAdX2UKGgGR7/TvGp++dsjaAdLA2gIR0ClOZUkfLcLdX2UKGgGR7/HYao/A0sOaAdLA2gIR0ClOWiL2pQ2dX2UKGgGR7/NU70WdmQKaAdLA2gIR0ClOQDhcZ+AdX2UKGgGR7/YOxSpBHCoaAdLBGgIR0ClOUbiZOSGdX2UKGgGR7/KpxWDHwPRaAdLA2gIR0ClOaQ0fozOdX2UKGgGR7/IiL2pQ1rJaAdLA2gIR0ClOXeqrBCVdX2UKGgGR7+8OqebutwKaAdLAmgIR0ClOU86mwaBdX2UKGgGR7/T8vmHP/rCaAdLBGgIR0ClORPl2eQNdX2UKGgGR7/ADeTFERapaAdLAmgIR0ClOX/gBLf2dX2UKGgGR7+l5OafBeolaAdLAWgIR0ClOVOwosqbdX2UKGgGR7/GaqCHymQ9aAdLA2gIR0ClObQ/xDsudX2UKGgGR7+09RrJr+HaaAdLAmgIR0ClOR+Zof0VdX2UKGgGR7/LdIoVmBe5aAdLA2gIR0ClOY8/dIoWdX2UKGgGR7/UWLP2PDHfaAdLA2gIR0ClOcBvaURndX2UKGgGR7+JWzWwu/UOaAdLAWgIR0ClOZOoHcDbdX2UKGgGR7/LpUxVQyh0aAdLA2gIR0ClOSwfQrtmdX2UKGgGR7/Ypg1FYuCgaAdLBWgIR0ClOWu3trsTdX2UKGgGR7+57gKneiztaAdLAmgIR0ClOc1bA1vVdX2UKGgGR7/DSbYsd1dPaAdLAmgIR0ClOaFgDzRQdX2UKGgGR7+SG34Kx9ofaAdLAWgIR0ClOXW7FsHjdX2UKGgGR7/M4axX4j8laAdLA2gIR0ClOT6Jyhi9dX2UKGgGR7+/Dcdo371qaAdLAmgIR0ClOaqJl8PXdX2UKGgGR7/UUWVNYbKiaAdLA2gIR0ClOdufukULdX2UKGgGR7/MEnssxwhoaAdLA2gIR0ClOYKqfe1sdX2UKGgGR7/UK7qY7aIvaAdLA2gIR0ClOUrmhdt3dX2UKGgGR7+/BN21UlzEaAdLAmgIR0ClOeXZPEbYdX2UKGgGR7/QeMyad+XraAdLA2gIR0ClObkvsZ5zdX2UKGgGR7/AMS9M9KVZaAdLAmgIR0ClOY0iY9gXdX2UKGgGR7+m0u14Pf8/aAdLAWgIR0ClOesIVuaXdX2UKGgGR7/BJwsGxD9gaAdLAmgIR0ClOVcIJJGwdX2UKGgGR7+70K7ZnL7oaAdLAmgIR0ClOZc1Gb1AdX2UKGgGR7+SQtBfKISEaAdLAWgIR0ClOVv07KaHdX2UKGgGR7/ONfgJkXk6aAdLA2gIR0ClOckEcKgJdX2UKGgGR7/LeHBUJfICaAdLA2gIR0ClOfsSCe3AdX2UKGgGR7+1S75Ec81XaAdLAmgIR0ClOaIuoP07dX2UKGgGR7/EbBGhEjPfaAdLA2gIR0ClOWz7EYO2dX2UKGgGR7+7VnVXmvGIaAdLAmgIR0ClOgW1MM7VdX2UKGgGR7/Sr+o99tuUaAdLA2gIR0ClOdkHt4RmdX2UKGgGR7+nkT6BRQ7+aAdLAWgIR0ClOXF+Vkc0dX2UKGgGR7/SEw35vcagaAdLA2gIR0ClObDwpe/pdX2UKGgGR7+3Tvy9VWCFaAdLAmgIR0ClOeEXk5p8dX2UKGgGR7/B51Ng0CRwaAdLAmgIR0ClOXmgBcRldX2UKGgGR7/Zr56+nIhhaAdLBGgIR0ClOhjqOcUedX2UKGgGR7/MA0bcXWOIaAdLA2gIR0ClOcAyVObidX2UKGgGR7+pCtzS1E3LaAdLAWgIR0ClOcTo+wC9dX2UKGgGR7/EWKMvRJEqaAdLAmgIR0ClOiJeNT99dX2UKGgGR7/S1RtP557gaAdLBGgIR0ClOfXkxREXdX2UKGgGR7/cejEehf0FaAdLBGgIR0ClOY5U1hsqdX2UKGgGR7/Q+X7cfvF4aAdLA2gIR0ClOdI2fkFOdX2UKGgGR7/J/jKgZjx1aAdLA2gIR0ClOjIRh+fAdX2UKGgGR7/WXcQAdXDFaAdLA2gIR0ClOgVymygPdX2UKGgGR7/ENaQmu1WsaAdLA2gIR0ClOZ384xUOdX2UKGgGR7+7dcjZ+QU6aAdLAmgIR0ClOg2om5UcdX2UKGgGR7/QiADq4YrKaAdLA2gIR0ClOeGICU5ddX2UKGgGR7+2bCrLhaTwaAdLAmgIR0ClOaZgw482dX2UKGgGR7/RkS26TW5IaAdLA2gIR0ClOj9CVryldX2UKGgGR7+2t9x6v7m/aAdLAmgIR0ClOems3hn8dX2UKGgGR7+0HMUypJf6aAdLAmgIR0ClOkkj5bhWdX2UKGgGR7/Mkona37UHaAdLA2gIR0ClObS8SPELdX2UKGgGR7/QW/ag2606aAdLBGgIR0ClOiD2rXDndX2UKGgGR7/C4MnZ00WNaAdLAmgIR0ClOfTPjXFtdX2UKGgGR7/DtYSxqwhXaAdLAmgIR0ClOlIbGWD6dX2UKGgGR7/CP3i704BFaAdLAmgIR0ClOb3cpLEldX2UKGgGR7+Sy6cy31BdaAdLAWgIR0ClOlbW3BpIdX2UKGgGR7/QRcNYr8R+aAdLA2gIR0ClOgJgkTpQdX2UKGgGR7/WauwHJLdvaAdLBGgIR0ClOjWRA8jidX2UKGgGR7/SKiwjdHlPaAdLA2gIR0ClOmcUdq+KdX2UKGgGR7+0vmHP/rB1aAdLAmgIR0ClOg4hdMTOdX2UKGgGR7/XeOn2qT8paAdLBGgIR0ClOdMBIWgwdX2UKGgGR7/CP8yeqaPTaAdLAmgIR0ClOhbdi2DydX2UKGgGR7/Nai9IwudxaAdLA2gIR0ClOnSRB/qgdX2UKGgGR7/V8Jlar3j/aAdLBGgIR0ClOkf/FR51dX2UKGgGR7/Rg6EJ0GNaaAdLA2gIR0ClOeCOFQEZdX2UKGgGR7/VAwPAfuCxaAdLA2gIR0ClOibW/ag3dX2UKGgGR7/USSeRPoFFaAdLA2gIR0ClOoRtP558dX2UKGgGR7/NCY1He7+UaAdLA2gIR0ClOfArH2h7dX2UKGgGR7/ZHu7YkE9uaAdLBGgIR0ClOlw4sEq2dX2UKGgGR7/Tq94/u9eyaAdLA2gIR0ClOjS0rsjWdX2UKGgGR7/KS/0ulGgBaAdLA2gIR0ClOpSiVSn+dX2UKGgGR7/LU2kzoEB9aAdLA2gIR0ClOgCzsyBTdX2UKGgGR7/Dhl18stkGaAdLAmgIR0ClOkCkfs/qdX2UKGgGR7+y24NI9TxYaAdLAmgIR0ClOp36Q/5ddX2UKGgGR7/azRQaaTfSaAdLBGgIR0ClOnFO45LidX2UKGgGR7/LnSOR1X/6aAdLA2gIR0ClOg33xnWbdX2UKGgGR7+yVbA1vVEvaAdLAmgIR0ClOqbgjyFxdX2UKGgGR7/MIomXw9aEaAdLA2gIR0ClOk3r+o9+dX2UKGgGR7/bHpbD/EOzaAdLBGgIR0ClOoWLpA2RdX2UKGgGR7/KKyfL9uP4aAdLA2gIR0ClOh5DiOvMdX2UKGgGR7/KaS9ugpSaaAdLA2gIR0ClOrdiDujRdX2UKGgGR7/SuUD+zdDZaAdLA2gIR0ClOl6QV9F4dX2UKGgGR7/CdlNDc/MXaAdLAmgIR0ClOo8XN1QqdX2UKGgGR7/IIeHSF49paAdLA2gIR0ClOsZn+Q2ddX2UKGgGR7/JhfjS5RTCaAdLA2gIR0ClOm1vuPV/dX2UKGgGR7/VysS00FbFaAdLBGgIR0ClOjIgeRxMdX2UKGgGR7/JXsgMc6vJaAdLA2gIR0ClOp4gJTl1dX2UKGgGR7+V+Vkc0cfeaAdLAWgIR0ClOnH58BuGdX2UKGgGR7+/MibDuSfUaAdLAmgIR0ClOs+ee4CqdX2UKGgGR7+clsxfv4M4aAdLAWgIR0ClOqLxZuAJdX2UKGgGR7/AHWSU1Q67aAdLAmgIR0ClOtg5imVJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (657 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.2110434129834175, "std_reward": 0.16863538736735173, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-30T22:36:08.210084"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf825fa927c2778decee373ee33dff2c0cc61660e5fdd64e9e483f37f9c7a1f4
|
3 |
+
size 2629
|