File size: 2,836 Bytes
d921588
917933f
 
d921588
917933f
d921588
 
 
917933f
d921588
 
 
917933f
d921588
 
 
 
 
917933f
 
d921588
 
917933f
d921588
 
 
 
 
 
 
 
 
917933f
d921588
917933f
d921588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---

language:
- zh
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- edmundchan70/Cantonese_fine_tune
metrics:
- wer
model-index:
- name: Whisper Small fine tune-Edmund-0818
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Preach_speech_finetuning
      type: edmundchan70/Cantonese_fine_tune
      config: default
      split: train
      args: 'config: chinese, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 30.476190476190478
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small fine tune-Edmund-0818

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Preach_speech_finetuning dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1966
- Wer: 30.4762

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.25e-05

- train_batch_size: 16

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Wer     |

|:-------------:|:-----:|:----:|:---------------:|:-------:|

| No log        | 1.0   | 156  | 0.1196          | 17.1429 |

| No log        | 2.0   | 312  | 0.1553          | 24.6032 |

| No log        | 3.0   | 468  | 0.1655          | 26.5079 |

| 0.0806        | 4.0   | 624  | 0.1820          | 29.5238 |

| 0.0806        | 5.0   | 780  | 0.1792          | 30.1587 |

| 0.0806        | 6.0   | 936  | 0.1998          | 31.5873 |

| 0.0131        | 7.0   | 1092 | 0.1954          | 31.2698 |

| 0.0131        | 8.0   | 1248 | 0.1923          | 30.6349 |

| 0.0131        | 9.0   | 1404 | 0.1905          | 31.2698 |

| 0.0016        | 10.0  | 1560 | 0.1954          | 31.2698 |

| 0.0016        | 11.0  | 1716 | 0.1931          | 31.1111 |

| 0.0016        | 12.0  | 1872 | 0.1953          | 30.4762 |

| 0.0005        | 13.0  | 2028 | 0.1960          | 30.6349 |

| 0.0005        | 14.0  | 2184 | 0.1964          | 30.6349 |

| 0.0005        | 15.0  | 2340 | 0.1966          | 30.4762 |





### Framework versions



- Transformers 4.44.0

- Pytorch 2.4.0+cu124

- Datasets 2.21.0

- Tokenizers 0.19.1