--- language: - zh license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - edmundchan70/Cantonese_fine_tune metrics: - wer model-index: - name: Whisper Small fine tune-Edmund-0818 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Preach_speech_finetuning type: edmundchan70/Cantonese_fine_tune config: default split: train args: 'config: chinese, split: test' metrics: - name: Wer type: wer value: 30.476190476190478 --- # Whisper Small fine tune-Edmund-0818 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Preach_speech_finetuning dataset. It achieves the following results on the evaluation set: - Loss: 0.1966 - Wer: 30.4762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.25e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 1.0 | 156 | 0.1196 | 17.1429 | | No log | 2.0 | 312 | 0.1553 | 24.6032 | | No log | 3.0 | 468 | 0.1655 | 26.5079 | | 0.0806 | 4.0 | 624 | 0.1820 | 29.5238 | | 0.0806 | 5.0 | 780 | 0.1792 | 30.1587 | | 0.0806 | 6.0 | 936 | 0.1998 | 31.5873 | | 0.0131 | 7.0 | 1092 | 0.1954 | 31.2698 | | 0.0131 | 8.0 | 1248 | 0.1923 | 30.6349 | | 0.0131 | 9.0 | 1404 | 0.1905 | 31.2698 | | 0.0016 | 10.0 | 1560 | 0.1954 | 31.2698 | | 0.0016 | 11.0 | 1716 | 0.1931 | 31.1111 | | 0.0016 | 12.0 | 1872 | 0.1953 | 30.4762 | | 0.0005 | 13.0 | 2028 | 0.1960 | 30.6349 | | 0.0005 | 14.0 | 2184 | 0.1964 | 30.6349 | | 0.0005 | 15.0 | 2340 | 0.1966 | 30.4762 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1