File size: 1,771 Bytes
23ebb0e d16d08f 23ebb0e 42df8a1 23ebb0e 42df8a1 23ebb0e d16d08f 23ebb0e 42df8a1 23ebb0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
- dolly
- ipex
- max series gpu
base_model: microsoft/phi-1_5
datasets:
- generator
model-index:
- name: phi-1_5-lora-tuned-sft-dolly
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phi-1_5-lora-tuned-sft-dolly
This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Hardware
Trained model on Intel Max 1550 GPU
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 593
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.7868 | 0.8065 | 100 | 2.5808 |
| 2.547 | 1.6129 | 200 | 2.4670 |
| 2.4664 | 2.4194 | 300 | 2.4305 |
| 2.4586 | 3.2258 | 400 | 2.4108 |
| 2.4204 | 4.0323 | 500 | 2.4000 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.1.0.post0+cxx11.abi
- Datasets 2.19.1
- Tokenizers 0.19.1 |